Search results
Results from the WOW.Com Content Network
Aromatic L-amino acid decarboxylase is active as a homodimer. Before addition of the pyridoxal phosphate cofactor, the apoenzyme exists in an open conformation. Upon cofactor binding, a large structural transformation occurs as the subunits pull closer and close the active site. This conformational change results in the active, closed ...
Once levodopa has entered the central nervous system, it is converted into dopamine by the enzyme aromatic l-amino acid decarboxylase (AAAD), also known as DOPA decarboxylase (DDC). Pyridoxal phosphate (vitamin B 6) is a required cofactor in this reaction, and may occasionally be administered along with levodopa, usually in the form of pyridoxine.
l-DOPA, also known as l-3,4-dihydroxyphenylalanine and used medically as levodopa, is made and used as part of the normal biology of some plants [2] and animals, including humans. Humans, as well as a portion of the other animals that utilize l -DOPA, make it via biosynthesis from the amino acid l -tyrosine .
L-Tyrosine is converted into L-DOPA by the enzyme tyrosine hydroxylase, with tetrahydrobiopterin, O 2, and iron (Fe 2+) as cofactors. [25] L-DOPA is converted into dopamine by the enzyme aromatic L-amino acid decarboxylase (also known as DOPA decarboxylase), with pyridoxal phosphate as the cofactor. [25]
4.3 Aromatic L-amino acid decarboxylase inhibitors (DOPA decarboxylase inhibitors) ... 5.2 Cofactors. 5.3 Neurotoxins. 5.4 Levodopa prodrugs. 5.5 Photoswitchable ligands.
In molecular biology, group II pyridoxal-dependent decarboxylases are a family of enzymes including aromatic-L-amino-acid decarboxylase (L-dopa decarboxylase or tryptophan decarboxylase) EC 4.1.1.28 that catalyse the decarboxylation of tryptophan to tryptamine, tyrosine decarboxylase EC 4.1.1.25 that converts tyrosine into tyramine and histidine decarboxylase EC 4.1.1.22 that catalyses the ...
An aromatic L-amino acid decarboxylase inhibitor (synonyms: DOPA decarboxylase inhibitor, extracerebral decarboxylase inhibitor, DDCI and AAADI) is a medication of type enzyme inhibitor which inhibits the synthesis of dopamine by the enzyme aromatic L-amino acid decarboxylase (AADC, AAAD, or DOPA decarboxylase).
Tyrosine hydroxylase or tyrosine 3-monooxygenase is the enzyme responsible for catalyzing the conversion of the amino acid L-tyrosine to L-3,4-dihydroxyphenylalanine (L-DOPA). [5] [6] It does so using molecular oxygen (O 2), as well as iron (Fe 2+) and tetrahydrobiopterin as cofactors.