enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Ergodic process - Wikipedia

    en.wikipedia.org/wiki/Ergodic_process

    In this regime, any collection of random samples from a process must represent the average statistical properties of the entire regime. Conversely, a regime of a process that is not ergodic is said to be in non-ergodic regime. [2] A regime implies a time-window of a process whereby ergodicity measure is applied.

  3. Ergodicity - Wikipedia

    en.wikipedia.org/wiki/Ergodicity

    Equivalently, a sufficiently large collection of random samples from a process can represent the average statistical properties of the entire process. Ergodicity is a property of the system; it is a statement that the system cannot be reduced or factored into smaller components. Ergodic theory is the study of systems possessing ergodicity.

  4. Stationary ergodic process - Wikipedia

    en.wikipedia.org/wiki/Stationary_ergodic_process

    In probability theory, a stationary ergodic process is a stochastic process which exhibits both stationarity and ergodicity.In essence this implies that the random process will not change its statistical properties with time and that its statistical properties (such as the theoretical mean and variance of the process) can be deduced from a single, sufficiently long sample (realization) of the ...

  5. Ergodic theory - Wikipedia

    en.wikipedia.org/wiki/Ergodic_theory

    Ergodic theory is often concerned with ergodic transformations.The intuition behind such transformations, which act on a given set, is that they do a thorough job "stirring" the elements of that set. E.g. if the set is a quantity of hot oatmeal in a bowl, and if a spoonful of syrup is dropped into the bowl, then iterations of the inverse of an ergodic transformation of the oatmeal will not ...

  6. Random vibration - Wikipedia

    en.wikipedia.org/wiki/Random_vibration

    Some common examples include an automobile riding on a rough road, wave height on the water, or the load induced on an airplane wing during flight. Structural response to random vibration is usually treated using statistical or probabilistic approaches. Mathematically, random vibration is characterized as an ergodic and stationary process.

  7. Asymptotic equipartition property - Wikipedia

    en.wikipedia.org/wiki/Asymptotic_equipartition...

    Given a discrete-time stationary ergodic stochastic process on the probability space (,,), the asymptotic equipartition property is an assertion that, almost surely, ⁡ (,, …,) where () or simply denotes the entropy rate of , which must exist for all discrete-time stationary processes including the ergodic ones.

  8. Ergodicity economics - Wikipedia

    en.wikipedia.org/wiki/Ergodicity_economics

    Ergodicity economics is a research programme that applies the concept of ergodicity to problems in economics and decision-making under uncertainty. [1] The programme's main goal is to understand how traditional economic theory, framed in terms of the expectation values, changes when replacing expectation value with time averages.

  9. Glivenko–Cantelli theorem - Wikipedia

    en.wikipedia.org/wiki/Glivenko–Cantelli_theorem

    If is a stationary ergodic process, then () converges almost surely to = ⁡ [] . The Glivenko–Cantelli theorem gives a stronger mode of convergence than this in the iid case. An even stronger uniform convergence result for the empirical distribution function is available in the form of an extended type of law of the iterated logarithm .