Search results
Results from the WOW.Com Content Network
This statistics -related article is a stub. You can help Wikipedia by expanding it.
Excel maintains 15 figures in its numbers, but they are not always accurate; mathematically, the bottom line should be the same as the top line, in 'fp-math' the step '1 + 1/9000' leads to a rounding up as the first bit of the 14 bit tail '10111000110010' of the mantissa falling off the table when adding 1 is a '1', this up-rounding is not undone when subtracting the 1 again, since there is no ...
While accuracy, as measured by quantitative errors, is important, it may be more crucial to accurately forecast the direction of change. Directional accuracy is similar to a binary evaluation. The metric only considers the upward or downward direction in the time series and is independent of quantitive value of increase or decrease.
Any non-linear differentiable function, (,), of two variables, and , can be expanded as + +. If we take the variance on both sides and use the formula [11] for the variance of a linear combination of variables (+) = + + (,), then we obtain | | + | | +, where is the standard deviation of the function , is the standard deviation of , is the standard deviation of and = is the ...
Double entry (or more) may also be leveraged to minimize transcription or transposition error, but at the cost of a reduced number of entries per unit time. Mathematical transposition errors are easily identifiable. Add up the numbers that make up the difference and the resultant number will always be evenly divisible by nine. For example, (72 ...
Constant or systematic errors on the contrary must be carefully avoided, because they arise from one or more causes which constantly act in the same way, and have the effect of always altering the result of the experiment in the same direction. They therefore alter the value observed and repeated identical measurements do not reduce such errors.
Best rational approximants for π (green circle), e (blue diamond), ϕ (pink oblong), (√3)/2 (grey hexagon), 1/√2 (red octagon) and 1/√3 (orange triangle) calculated from their continued fraction expansions, plotted as slopes y/x with errors from their true values (black dashes)
This article is within the scope of WikiProject Statistics, a collaborative effort to improve the coverage of statistics on Wikipedia. If you would like to participate, please visit the project page, where you can join the discussion and see a list of open tasks.