Search results
Results from the WOW.Com Content Network
In geometry, an isosceles triangle (/ aɪ ˈ s ɒ s ə l iː z /) is a triangle that has two sides of equal length or two angles of equal measure. Sometimes it is specified as having exactly two sides of equal length, and sometimes as having at least two sides of equal length, the latter version thus including the equilateral triangle as a special case.
Let A'BC be the equilateral triangle having base BC and vertex A' on the negative side of BC and let AB'C and ABC' be similarly constructed equilateral triangles based on the other two sides of triangle ABC. Then the lines AA', BB', CC' are concurrent and the point of concurrence is the 1st isogonal center. Its trilinear coordinates are
The Encyclopedia of Triangle Centers (ETC) is an online list of thousands of points or "centers" associated with the geometry of a triangle. This resource is hosted at the University of Evansville . It started from a list of 400 triangle centers published in the 1998 book Triangle Centers and Central Triangles by Professor Clark Kimberling .
Enneahectogon - 900 sides; Chiliagon - 1,000 sides; Myriagon - 10,000 sides; Megagon - 1,000,000 sides; Star polygon – there are multiple types of stars Pentagram - star polygon with 5 sides; Hexagram – star polygon with 6 sides Star of David (example) Heptagram – star polygon with 7 sides; Octagram – star polygon with 8 sides Star of ...
The large triangle that is inscribed in the circle gets subdivided into three smaller triangles, all of which are isosceles because their upper two sides are radii of the circle. Inside each isosceles triangle the pair of base angles are equal to each other, and are half of 180° minus the apex angle at the circle's center.
The incenter lies at equal distances from the three line segments forming the sides of the triangle, and also from the three lines containing those segments. It is the only point equally distant from the line segments, but there are three more points equally distant from the lines, the excenters, which form the centers of the excircles of the ...
In defining the Napoleon points we begin with equilateral triangles drawn on the sides of ABC and then consider the centers X, Y, Z of these triangles. These centers can be thought as the vertices of isosceles triangles erected on the sides of triangle ABC with the base angles equal to π /6 (30 degrees).
Triangles have many types based on the length of the sides and the angles. A triangle whose sides are all the same length is an equilateral triangle, [3] a triangle with two sides having the same length is an isosceles triangle, [4] [a] and a triangle with three different-length sides is a scalene triangle. [7]