enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Crystal system - Wikipedia

    en.wikipedia.org/wiki/Crystal_system

    where n 1, n 2, and n 3 are integers and a 1, a 2, and a 3 are three non-coplanar vectors, called primitive vectors. These lattices are classified by the space group of the lattice itself, viewed as a collection of points; there are 14 Bravais lattices in three dimensions; each belongs to one lattice system only.

  3. Unit cell - Wikipedia

    en.wikipedia.org/wiki/Unit_cell

    A primitive cell is a unit cell that contains exactly one lattice point. For unit cells generally, lattice points that are shared by n cells are counted as ⁠ 1 / n ⁠ of the lattice points contained in each of those cells; so for example a primitive unit cell in three dimensions which has lattice points only at its eight vertices is considered to contain ⁠ 1 / 8 ⁠ of each of them. [3]

  4. Bravais lattice - Wikipedia

    en.wikipedia.org/wiki/Bravais_lattice

    If the lattice or crystal is 2-dimensional, the primitive cell has a minimum area; likewise in 3 dimensions the primitive cell has a minimum volume. Despite this rigid minimum-size requirement, there is not one unique choice of primitive unit cell. In fact, all cells whose borders are primitive translation vectors will be primitive unit cells.

  5. Crystal structure - Wikipedia

    en.wikipedia.org/wiki/Crystal_structure

    For face-centered cubic (fcc) and body-centered cubic (bcc) lattices, the primitive lattice vectors are not orthogonal. However, in these cases the Miller indices are conventionally defined relative to the lattice vectors of the cubic supercell and hence are again simply the Cartesian directions.

  6. Reciprocal lattice - Wikipedia

    en.wikipedia.org/wiki/Reciprocal_lattice

    Now take one of the vertices of the primitive unit cell as the origin. Give the basis vectors of the real lattice. Then from the known formulae, you can calculate the basis vectors of the reciprocal lattice. These reciprocal lattice vectors of the FCC represent the basis vectors of a BCC real lattice.

  7. Wigner–Seitz cell - Wikipedia

    en.wikipedia.org/wiki/Wigner–Seitz_cell

    Nearby lattice points are continually examined until the area or volume enclosed is the correct area or volume for a primitive cell. Alternatively, if the basis vectors of the lattice are reduced using lattice reduction only a set number of lattice points need to be used. [10]

  8. Cubic crystal system - Wikipedia

    en.wikipedia.org/wiki/Cubic_crystal_system

    Accordingly, the primitive cubic structure, with especially low atomic packing factor, is rare in nature, but is found in polonium. [4] [5] The bcc and fcc, with their higher densities, are both quite common in nature. Examples of bcc include iron, chromium, tungsten, and niobium. Examples of fcc include aluminium, copper, gold and silver.

  9. Orthorhombic crystal system - Wikipedia

    en.wikipedia.org/wiki/Orthorhombic_crystal_system

    In crystallography, the orthorhombic crystal system is one of the 7 crystal systems.Orthorhombic lattices result from stretching a cubic lattice along two of its orthogonal pairs by two different factors, resulting in a rectangular prism with a rectangular base (a by b) and height (c), such that a, b, and c are distinct.