enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. JTS Topology Suite - Wikipedia

    en.wikipedia.org/wiki/JTS_Topology_Suite

    JTS is developed under the Java JDK 1.4 platform. It is 100% pure Java. It will run on all more recent JDKs as well. [6] JTS has been ported to the .NET Framework as the Net Topology Suite. A JTS subset has been ported to C++, with entry points declared as C interfaces, as the GEOS library.

  3. Regular polygon - Wikipedia

    en.wikipedia.org/wiki/Regular_polygon

    These properties apply to all regular polygons, whether convex or star: A regular n-sided polygon has rotational symmetry of order n. All vertices of a regular polygon lie on a common circle (the circumscribed circle); i.e., they are concyclic points. That is, a regular polygon is a cyclic polygon.

  4. 7-simplex - Wikipedia

    en.wikipedia.org/wiki/7-simplex

    This configuration matrix represents the 7-simplex. The rows and columns correspond to vertices, edges, faces, cells, 4-faces, 5-faces and 6-faces. The diagonal numbers say how many of each element occur in the whole 7-simplex.

  5. Uniform tiling - Wikipedia

    en.wikipedia.org/wiki/Uniform_tiling

    Seeing a regular star polygon as a nonconvex isotoxal simple polygon with twice as many (shorter) sides but alternating the same outer and "inner" internal angles allows regular star polygons to be used in a tiling, and seeing isotoxal simple polygons as "regular" allows regular star polygons to (but not all of them can) be used in a "uniform ...

  6. Euclidean tilings by convex regular polygons - Wikipedia

    en.wikipedia.org/wiki/Euclidean_tilings_by...

    1-uniform tilings include 3 regular tilings, and 8 semiregular ones, with 2 or more types of regular polygon faces. There are 20 2-uniform tilings, 61 3-uniform tilings, 151 4-uniform tilings, 332 5-uniform tilings and 673 6-uniform tilings. Each can be grouped by the number m of distinct vertex figures, which are also called m-Archimedean tilings.

  7. Regular polytope - Wikipedia

    en.wikipedia.org/wiki/Regular_polytope

    In mathematics, a regular polytope is a polytope whose symmetry group acts transitively on its flags, thus giving it the highest degree of symmetry.In particular, all its elements or j-faces (for all 0 ≤ j ≤ n, where n is the dimension of the polytope) — cells, faces and so on — are also transitive on the symmetries of the polytope, and are themselves regular polytopes of dimension j≤ n.

  8. Uniform tilings in hyperbolic plane - Wikipedia

    en.wikipedia.org/wiki/Uniform_tilings_in...

    In hyperbolic geometry, a uniform hyperbolic tiling (or regular, quasiregular or semiregular hyperbolic tiling) is an edge-to-edge filling of the hyperbolic plane which has regular polygons as faces and is vertex-transitive (transitive on its vertices, isogonal, i.e. there is an isometry mapping any vertex onto any other).

  9. Polygonalization - Wikipedia

    en.wikipedia.org/wiki/Polygonalization

    The polygonal wraps, weakly simple polygons that use each given point one or more times as a vertex, include all polygonalizations and are connected by local moves. [2] Another more general class of polygons, the surrounding polygons, are simple polygons that have some of the given points as vertices and enclose all of the points. They are ...