Search results
Results from the WOW.Com Content Network
In calculus, the inverse function rule is a formula that expresses the derivative of the inverse of a bijective and differentiable function f in terms of the derivative of f. More precisely, if the inverse of f {\displaystyle f} is denoted as f − 1 {\displaystyle f^{-1}} , where f − 1 ( y ) = x {\displaystyle f^{-1}(y)=x} if and only if f ...
is invertible, since the derivative f′(x) = 3x 2 + 1 is always positive. If the function f is differentiable on an interval I and f′(x) ≠ 0 for each x ∈ I, then the inverse f −1 is differentiable on f(I). [17] If y = f(x), the derivative of the inverse is given by the inverse function theorem,
The inverse function theorem can also be generalized to differentiable maps between Banach spaces X and Y. [20] Let U be an open neighbourhood of the origin in X and F : U → Y {\displaystyle F:U\to Y\!} a continuously differentiable function, and assume that the Fréchet derivative d F 0 : X → Y {\displaystyle dF_{0}:X\to Y\!} of F at 0 is ...
The theorem was proved by Lagrange [2] and generalized by Hans Heinrich Bürmann, [3] [4] [5] both in the late 18th century. There is a straightforward derivation using complex analysis and contour integration ; [ 6 ] the complex formal power series version is a consequence of knowing the formula for polynomials , so the theory of analytic ...
Nevertheless, they all assume that f or f −1 is differentiable. The general version of the theorem, free from this additional assumption, was proposed by Michael Spivak in 1965, as an exercise in the Calculus, [2] and a fairly complete proof following the same lines was published by Eric Key in 1994. [3]
An involution is a function f : X → X that, when applied twice, brings one back to the starting point. In mathematics, an involution, involutory function, or self-inverse function [1] is a function f that is its own inverse, f(f(x)) = x. for all x in the domain of f. [2] Equivalently, applying f twice produces the original value.
Since the function f(n) = A(n, n) considered above grows very rapidly, its inverse function, f −1, grows very slowly. This inverse Ackermann function f −1 is usually denoted by α . In fact, α ( n ) is less than 5 for any practical input size n , since A (4, 4) is on the order of 2 2 2 2 16 {\displaystyle 2^{2^{2^{2^{16}}}}} .
The slope field of () = +, showing three of the infinitely many solutions that can be produced by varying the arbitrary constant c.. In calculus, an antiderivative, inverse derivative, primitive function, primitive integral or indefinite integral [Note 1] of a continuous function f is a differentiable function F whose derivative is equal to the original function f.