Search results
Results from the WOW.Com Content Network
The dotted line in red represents a cut with three crossing edges. The dashed line in green represents one of the minimum cuts of this graph, crossing only two edges. [1] In graph theory, a minimum cut or min-cut of a graph is a cut (a partition of the vertices of a graph into two disjoint subsets) that is minimal in some metric.
A graph and two of its cuts. The dotted line in red is a cut with three crossing edges. The dashed line in green is a min-cut of this graph, crossing only two edges. In computer science and graph theory, Karger's algorithm is a randomized algorithm to compute a minimum cut of a connected graph. It was invented by David Karger and first ...
The illustration on the right shows a minimum cut: the size of this cut is 2, and there is no cut of size 1 because the graph is bridgeless. The max-flow min-cut theorem proves that the maximum network flow and the sum of the cut-edge weights of any minimum cut that separates the source and the sink are equal.
The vertex-connectivity statement of Menger's theorem is as follows: . Let G be a finite undirected graph and x and y two nonadjacent vertices. Then the size of the minimum vertex cut for x and y (the minimum number of vertices, distinct from x and y, whose removal disconnects x and y) is equal to the maximum number of pairwise internally disjoint paths from x to y.
The minimum cut found in all phases will be the minimum weighted cut of the graph. A cut is a partition of the vertices of a graph into two non-empty, disjoint subsets. A minimum cut is a cut for which the size or weight of the cut is not larger than the size of any other cut. For an unweighted graph, the minimum cut would simply be the cut ...
In combinatorial optimization, the Gomory–Hu tree [1] of an undirected graph with capacities is a weighted tree that represents the minimum s-t cuts for all s-t pairs in the graph. The Gomory–Hu tree can be constructed in | V | − 1 maximum flow computations. It is named for Ralph E. Gomory and T. C. Hu.
In graph theory and combinatorial optimization, a closure of a directed graph is a set of vertices C, such that no edges leave C. The closure problem is the task of finding the maximum-weight or minimum-weight closure in a vertex-weighted directed graph. [1] [2] It may be solved in polynomial time using a reduction to the maximum flow problem.
A matching in G' induces a schedule for F and obviously maximum bipartite matching in this graph produces an airline schedule with minimum number of crews. [29] As it is mentioned in the Application part of this article, the maximum cardinality bipartite matching is an application of maximum flow problem.