Search results
Results from the WOW.Com Content Network
A Poisson regression model is sometimes known as a log-linear model, especially when used to model contingency tables. Negative binomial regression is a popular generalization of Poisson regression because it loosens the highly restrictive assumption that the variance is equal to the mean made by the Poisson model. The traditional negative ...
In statistics, a fixed-effect Poisson model is a Poisson regression model used for static panel data when the outcome variable is count data. Hausman, Hall, and Griliches pioneered the method in the mid 1980s.
In probability theory and statistics, the Poisson distribution (/ ˈ p w ɑː s ɒ n /) is a discrete probability distribution that expresses the probability of a given number of events occurring in a fixed interval of time if these events occur with a known constant mean rate and independently of the time since the last event. [1]
One of the most widely used and oldest traffic models is the Poisson Model. The memoryless Poisson distribution is the predominant model used for analyzing traffic in traditional telephony networks. The Poisson process is characterized as a renewal process. In a Poisson process the inter-arrival times are exponentially distributed with a rate ...
Poisson bipolar network model is a type of stochastic geometry model based on the Poisson process and is an early example of a model for mobile ad hoc networks (MANETs), [2] [31] [44] which are a self-organizing wireless communication network in which mobile devices rely on no infrastructure (base stations or access points). In MANET models ...
In survey methodology, Poisson sampling (sometimes denoted as PO sampling [1]: 61 ) is a sampling process where each element of the population is subjected to an independent Bernoulli trial which determines whether the element becomes part of the sample.
Hilbe [3] notes that "Poisson regression is traditionally conceived of as the basic count model upon which a variety of other count models are based." In a Poisson model, "… the random variable y {\displaystyle y} is the count response and parameter λ {\displaystyle \lambda } (lambda) is the mean.
In probability theory and statistics, the Conway–Maxwell–Poisson (CMP or COM–Poisson) distribution is a discrete probability distribution named after Richard W. Conway, William L. Maxwell, and Siméon Denis Poisson that generalizes the Poisson distribution by adding a parameter to model overdispersion and underdispersion.