Search results
Results from the WOW.Com Content Network
Another method, first developed in the 1980s, is called the Corey–Bakshi–Shibata reduction (CBS), and it features the use of an oxazaborolidine catalyst along with borane as a reducing agent for accomplishing enantioselective ketone reductions. The CBS reduction has been used extensively by chemists en route to synthesizing a wide variety ...
LAH is most commonly used for the reduction of esters [28] [29] and carboxylic acids [30] to primary alcohols; prior to the advent of LAH this was a difficult conversion involving sodium metal in boiling ethanol (the Bouveault-Blanc reduction). Aldehydes and ketones [31] can also be reduced to alcohols by LAH, but this is usually done using ...
The final step in the reduction of carboxylic acids and esters is hydrolysis of the aluminium alcoxide. [8] Esters (and amides) are more easily reduced than the parent carboxylic acids. Their reduction affords alcohols and amines, respectively. [9] The idealized equation for the reduction of an ester by lithium aluminium hydride is:
Alcohol oxidation is a collection of oxidation reactions in organic chemistry that convert alcohols to aldehydes, ketones, carboxylic acids, and esters. The reaction mainly applies to primary and secondary alcohols. Secondary alcohols form ketones, while primary alcohols form aldehydes or carboxylic acids. [1] A variety of oxidants can be used.
The Luche reduction can be conducted chemoselectively toward ketone in the presence of aldehydes or towards α,β-unsaturated ketones in the presence of a non-conjugated ketone. [5] An enone forms an allylic alcohol in a 1,2-addition, and the competing conjugate 1,4-addition is suppressed.
Each absorbed photon causes the formation of an exciton (an electron excited to a higher energy state) in the pigment molecule. The energy of the exciton is transferred to a chlorophyll molecule ( P680 , where P stands for pigment and 680 for its absorption maximum at 680 nm) in the reaction center of photosystem II via resonance energy transfer .
The Wolff–Kishner reduction is a reaction used in organic chemistry to convert carbonyl functionalities into methylene groups. [1] [2] In the context of complex molecule synthesis, it is most frequently employed to remove a carbonyl group after it has served its synthetic purpose of activating an intermediate in a preceding step.
The CBS reduction has since been utilized by organic chemists as a reliable method for the asymmetric reduction of achiral ketones. Notably, it has found prominent use not only in a number of natural product syntheses, but has been utilized on large scale in industry (See Scope Below).