Search results
Results from the WOW.Com Content Network
Enthalpy of combustion, Δ c H o –4163 kJ/mol Heat capacity, c p: 197.66 J/(mol K) Gas properties Std enthalpy change of formation, Δ f H o gas –167.2 kJ/mol Standard molar entropy, S o gas: 388.82 J/(mol K) Heat capacity, c p: 142.6 J/(mol K) at 25 °C van der Waals' constants [3] a = 2471 L 2 kPa/mol 2 b = 0.1735 liter per mole
Hexane (/ ˈ h ɛ k s eɪ n /) or n-hexane is an organic compound, a straight-chain alkane with six carbon atoms and the molecular formula C 6 H 14. [ 7 ] Hexane is a colorless liquid, odorless when pure, and with a boiling point of approximately 69 °C (156 °F).
Main page; Contents; Current events; Random article; About Wikipedia; Contact us
Table of specific heat capacities at 25 °C (298 K) unless otherwise noted. [citation needed] Notable minima and maxima are shown in maroon. Substance Phase Isobaric mass heat capacity c P J⋅g −1 ⋅K −1 Molar heat capacity, C P,m and C V,m J⋅mol −1 ⋅K −1 Isobaric volumetric heat capacity C P,v J⋅cm −3 ⋅K −1 Isochoric ...
Values are in kelvin K and degrees Celsius °C, rounded For the equivalent in degrees Fahrenheit °F, see: Boiling points of the elements (data page) Some values are predictions
where p is the vapor pressure, T is temperature (in °C or in K according to the value of C) and A, B and C are component-specific constants. The simplified form with C set to zero: = is the August equation, after the German physicist Ernst Ferdinand August (1795–1870). The August equation describes a linear relation between the logarithm ...
A typical phase diagram.The solid green line applies to most substances; the dashed green line gives the anomalous behavior of water. In thermodynamics, the triple point of a substance is the temperature and pressure at which the three phases (gas, liquid, and solid) of that substance coexist in thermodynamic equilibrium. [1]
The molar volume of gases around STP and at atmospheric pressure can be calculated with an accuracy that is usually sufficient by using the ideal gas law. The molar volume of any ideal gas may be calculated at various standard reference conditions as shown below: V m = 8.3145 × 273.15 / 101.325 = 22.414 dm 3 /mol at 0 °C and 101.325 kPa