Search results
Results from the WOW.Com Content Network
A reactor vessel head for a pressurized water reactor. This structure is attached to the top of the reactor vessel body. It contains penetrations to allow the control rod driving mechanism to attach to the control rods in the fuel assembly. The coolant level measurement probe also enters the vessel through the reactor vessel head.
English: Nuclear reactor: pressurized water type. Water is heated through the splitting of uranium atoms in the reactor core. The water, held under high pressure to keep it from boiling, produces steam by transferring heat to a secondary source of water. The steam is used to generate electricity.
English: Schematic diagram of an Advanced Gas-cooled Reactor type nuclear reactor 1. Charge tubes 2. Control rods 3. Graphite moderator 4. Fuel assemblies 5. Concrete pressure vessel and radiation shielding 6. Gas circulator 7. Water 8. Water circulator 9. Heat exchanger 10. Steam
You are free: to share – to copy, distribute and transmit the work; to remix – to adapt the work; Under the following conditions: attribution – You must give appropriate credit, provide a link to the license, and indicate if changes were made.
- A pressurised heavy water reactor is a nuclear power reactor that uses unenriched natural uranium as nuclear fuel and heavy water as moderator and as primary coolant. The heavy water is kept under pressure in order to raise its boiling point, allowing it to be heated to higher temperatures and thereby carry more heat out of the reactor core.
English: Generation II nuclear reactor vessel sizes of similar power output: PWR: typical Westinghouse 4 loop reactor pressure vessel (3411MWt, 1125MWe). CANDU: Darlington reactor calandria (2657MWt, 935MWe). BWR-4 reactor pressure vessel (3293MWt, 1098MWe). RBMK-1000 reactor steel vessel, biological shields, and water tank (3200MWt, 1000MWe).
A reactor protection system is designed to immediately terminate the nuclear reaction. By breaking the nuclear chain reaction, the source of heat is eliminated.Other systems can then be used to remove decay heat from the core.
In events where the reactor coolant pressure boundary remains intact, the Isolation Condenser System (ICS) is used to remove decay heat from the reactor and transfer it outside containment. The ICS system is a closed loop system that connects the reactor pressure vessel to a heat exchanger located in the upper elevation of the reactor building.