enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Right-hand rule - Wikipedia

    en.wikipedia.org/wiki/Right-hand_rule

    Right-hand rule. In mathematics and physics, the right-hand rule is a convention and a mnemonic, utilized to define the orientation of axes in three-dimensional space and to determine the direction of the cross product of two vectors, as well as to establish the direction of the force on a current-carrying conductor in a magnetic field.

  3. Oersted's law - Wikipedia

    en.wikipedia.org/wiki/Oersted's_law

    The direction of the magnetic field at a point, the direction of the arrowheads on the magnetic field lines, which is the direction that the "north pole" of the compass needle points, can be found from the current by the right-hand rule. If the right hand is wrapped around the wire so the thumb points in the direction of the current ...

  4. Magnetic field - Wikipedia

    en.wikipedia.org/wiki/Magnetic_field

    The direction of force on the charge can be determined by a mnemonic known as the right-hand rule (see the figure). [note 3] Using the right hand, pointing the thumb in the direction of the current, and the fingers in the direction of the magnetic field, the resulting force on the charge points outwards from the palm. The force on a negatively ...

  5. Lorentz force - Wikipedia

    en.wikipedia.org/wiki/Lorentz_force

    Right-hand rule for a current-carrying wire in a magnetic field B. When a wire carrying an electric current is placed in a magnetic field, each of the moving charges, which comprise the current, experiences the Lorentz force, and together they can create a macroscopic force on the wire (sometimes called the Laplace force).

  6. Force between magnets - Wikipedia

    en.wikipedia.org/wiki/Force_between_magnets

    Force between magnets. Magnets exert forces and torques on each other through the interaction of their magnetic fields. The forces of attraction and repulsion are a result of these interactions. The magnetic field of each magnet is due to microscopic currents of electrically charged electrons orbiting nuclei and the intrinsic magnetism of ...

  7. Faraday's law of induction - Wikipedia

    en.wikipedia.org/wiki/Faraday's_law_of_induction

    Faraday's law states that the emf is also given by the rate of change of the magnetic flux: where is the electromotive force (emf) and ΦB is the magnetic flux. The direction of the electromotive force is given by Lenz's law. The laws of induction of electric currents in mathematical form was established by Franz Ernst Neumann in 1845.

  8. Lenz's law - Wikipedia

    en.wikipedia.org/wiki/Lenz's_law

    The induced magnetic field inside any loop of wire always acts to keep the magnetic flux in the loop constant. The direction of an induced current can be determined using the right-hand rule to show which direction of current flow would create a magnetic field that would oppose the direction of changing flux through the loop. [8]

  9. Gauss's law for magnetism - Wikipedia

    en.wikipedia.org/wiki/Gauss's_law_for_magnetism

    e. In physics, Gauss's law for magnetism is one of the four Maxwell's equations that underlie classical electrodynamics. It states that the magnetic field B has divergence equal to zero, [1] in other words, that it is a solenoidal vector field. It is equivalent to the statement that magnetic monopoles do not exist. [2]