Search results
Results from the WOW.Com Content Network
An integral curve for X passing through p at time t 0 is a curve α : J → M of class C r−1, defined on an open interval J of the real line R containing t 0, such that α ( t 0 ) = p ; {\displaystyle \alpha (t_{0})=p;\,}
Integration around a closed curve in the clockwise sense is the negative of the same line integral in the counterclockwise sense (analogous to interchanging the limits in a definite integral): ∂ S {\displaystyle {\scriptstyle \partial S}} A ⋅ d ℓ = − {\displaystyle \mathbf {A} \cdot d{\boldsymbol {\ell }}=-} ∂ S {\displaystyle ...
In mathematics, a Cayley graph, also known as a Cayley color graph, Cayley diagram, group diagram, or color group, [1] is a graph that encodes the abstract structure of a group. Its definition is suggested by Cayley's theorem (named after Arthur Cayley ), and uses a specified set of generators for the group.
In integral calculus, Euler's formula for complex numbers may be used to evaluate integrals involving trigonometric functions. Using Euler's formula, any trigonometric function may be written in terms of complex exponential functions, namely e i x {\displaystyle e^{ix}} and e − i x {\displaystyle e^{-ix}} and then integrated.
An integral representation of a function is an expression of the function involving a contour integral. Various integral representations are known for many special functions. Integral representations can be important for theoretical reasons, e.g. giving analytic continuation or functional equations, or sometimes for numerical evaluations.
In the mathematical field of graph theory, an integral graph is a graph whose adjacency matrix's spectrum consists entirely of integers. In other words, a graph is an integral graph if all of the roots of the characteristic polynomial of its adjacency matrix are integers. [1] The notion was introduced in 1974 by Frank Harary and Allen Schwenk. [2]
Just as the definite integral of a positive function of one variable represents the area of the region between the graph of the function and the x-axis, the double integral of a positive function of two variables represents the volume of the region between the surface defined by the function (on the three-dimensional Cartesian plane where z = f(x, y)) and the plane which contains its domain. [1]
Let be a metric space with distance function .Let be a set of indices and let () be a tuple (indexed collection) of nonempty subsets (the sites) in the space .The Voronoi cell, or Voronoi region, , associated with the site is the set of all points in whose distance to is not greater than their distance to the other sites , where is any index different from .