enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Strength of materials - Wikipedia

    en.wikipedia.org/wiki/Strength_of_materials

    Strength of materials. The field of strength of materials (also called mechanics of materials) typically refers to various methods of calculating the stresses and strains in structural members, such as beams, columns, and shafts. The methods employed to predict the response of a structure under loading and its susceptibility to various failure ...

  3. Toughness - Wikipedia

    en.wikipedia.org/wiki/Toughness

    Toughness as defined by the area under the stress–strain curve. In materials science and metallurgy, toughness is the ability of a material to absorb energy and plastically deform without fracturing. [1] Toughness is the strength with which the material opposes rupture. One definition of material toughness is the amount of energy per unit ...

  4. Specific strength - Wikipedia

    en.wikipedia.org/wiki/Specific_strength

    The specific strength is a material's (or muscle's) strength (force per unit area at failure) divided by its density. It is also known as the strength-to-weight ratio or strength/weight ratio or strength-to-mass ratio. In fiber or textile applications, tenacity is the usual measure of specific strength. The SI unit for specific strength is Pa ...

  5. Structural engineering theory - Wikipedia

    en.wikipedia.org/wiki/Structural_engineering_theory

    Strength depends upon material properties. The strength of a material depends on its capacity to withstand axial stress, shear stress, bending, and torsion.The strength of a material is measured in force per unit area (newtons per square millimetre or N/mm², or the equivalent megapascals or MPa in the SI system and often pounds per square inch psi in the United States Customary Units system).

  6. Strengthening mechanisms of materials - Wikipedia

    en.wikipedia.org/wiki/Strengthening_mechanisms...

    Strengthening mechanisms of materials. Methods have been devised to modify the yield strength, ductility, and toughness of both crystalline and amorphous materials. These strengthening mechanisms give engineers the ability to tailor the mechanical properties of materials to suit a variety of different applications.

  7. Ultimate tensile strength - Wikipedia

    en.wikipedia.org/wiki/Ultimate_tensile_strength

    Ultimate tensile strength (also called UTS, tensile strength, TS, ultimate strength or in notation) [1] is the maximum stress that a material can withstand while being stretched or pulled before breaking. In brittle materials, the ultimate tensile strength is close to the yield point, whereas in ductile materials, the ultimate tensile strength ...

  8. Hardness - Wikipedia

    en.wikipedia.org/wiki/Hardness

    Hardness. In materials science, hardness (antonym: softness) is a measure of the resistance to localized plastic deformation, such as an indentation (over an area) or a scratch (linear), induced mechanically either by pressing or abrasion. In general, different materials differ in their hardness; for example hard metals such as titanium and ...

  9. Yield (engineering) - Wikipedia

    en.wikipedia.org/wiki/Yield_(engineering)

    Yield (engineering) In materials science and engineering, the yield point is the point on a stress-strain curve that indicates the limit of elastic behavior and the beginning of plastic behavior. Below the yield point, a material will deform elastically and will return to its original shape when the applied stress is removed. Once the yield ...