enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Strength of materials - Wikipedia

    en.wikipedia.org/wiki/Strength_of_materials

    In the mechanics of materials, the strength of a material is its ability to withstand an applied load without failure or plastic deformation. The field of strength of materials deals with forces and deformations that result from their acting on a material. A load applied to a mechanical member will induce internal forces within the member ...

  3. Strengthening mechanisms of materials - Wikipedia

    en.wikipedia.org/wiki/Strengthening_mechanisms...

    Strengthening mechanisms of materials. Methods have been devised to modify the yield strength, ductility, and toughness of both crystalline and amorphous materials. These strengthening mechanisms give engineers the ability to tailor the mechanical properties of materials to suit a variety of different applications.

  4. Ultimate tensile strength - Wikipedia

    en.wikipedia.org/wiki/Ultimate_tensile_strength

    Ultimate tensile strength (also called UTS, tensile strength, TS, ultimate strength or in notation) [1] is the maximum stress that a material can withstand while being stretched or pulled before breaking. In brittle materials, the ultimate tensile strength is close to the yield point, whereas in ductile materials, the ultimate tensile strength ...

  5. Tensile testing - Wikipedia

    en.wikipedia.org/wiki/Tensile_testing

    Tensile testing, also known as tension testing, [1] is a fundamental materials science and engineering test in which a sample is subjected to a controlled tension until failure. Properties that are directly measured via a tensile test are ultimate tensile strength, breaking strength, maximum elongation and reduction in area. [2]

  6. Mechanical properties of carbon nanotubes - Wikipedia

    en.wikipedia.org/wiki/Mechanical_properties_of...

    t. e. The mechanical properties of carbon nanotubes reveal them as one of the strongest materials in nature. Carbon nanotubes (CNTs) are long hollow cylinders of graphene. Although graphene sheets have 2D symmetry, carbon nanotubes by geometry have different properties in axial and radial directions. It has been shown that CNTs are very strong ...

  7. Resilience (materials science) - Wikipedia

    en.wikipedia.org/wiki/Resilience_(materials_science)

    In material science, resilience is the ability of a material to absorb energy when it is deformed elastically, and release that energy upon unloading. Proof resilience is defined as the maximum energy that can be absorbed up to the elastic limit, without creating a permanent distortion. The modulus of resilience is defined as the maximum energy ...

  8. Compressive strength - Wikipedia

    en.wikipedia.org/wiki/Compressive_strength

    Compressive strength. Measuring the compressive strength of a steel drum. In mechanics, compressive strength (or compression strength) is the capacity of a material or structure to withstand loads tending to reduce size (compression). It is opposed to tensile strength which withstands loads tending to elongate, resisting tension (being pulled ...

  9. Stress–strain curve - Wikipedia

    en.wikipedia.org/wiki/Stress–strain_curve

    Materials that are both strong and ductile are classified as tough. Toughness is a material property defined as the area under the stress-strain curve. Toughness can be determined by integrating the stress-strain curve. [3] It is the energy of mechanical deformation per unit volume prior to fracture.