Search results
Results from the WOW.Com Content Network
This velocity is the asymptotic limiting value of the acceleration process, because the effective forces on the body balance each other more and more closely as the terminal velocity is approached. In this example, a speed of 50 % of terminal velocity is reached after only about 3 seconds, while it takes 8 seconds to reach 90 %, 15 seconds to ...
In physics, Torricelli's equation, or Torricelli's formula, is an equation created by Evangelista Torricelli to find the final velocity of a moving object with constant acceleration along an axis (for example, the x axis) without having a known time interval. The equation itself is: [1] = + where is the object's final velocity along the x axis ...
There are two main descriptions of motion: dynamics and kinematics.Dynamics is general, since the momenta, forces and energy of the particles are taken into account. In this instance, sometimes the term dynamics refers to the differential equations that the system satisfies (e.g., Newton's second law or Euler–Lagrange equations), and sometimes to the solutions to those equations.
A rocket's required mass ratio as a function of effective exhaust velocity ratio. The classical rocket equation, or ideal rocket equation is a mathematical equation that describes the motion of vehicles that follow the basic principle of a rocket: a device that can apply acceleration to itself using thrust by expelling part of its mass with high velocity and can thereby move due to the ...
The formula for the velocity of a body in a circular orbit at distance r from the center of gravity of mass M can be derived as follows: Centrifugal acceleration matches the acceleration due to gravity.
Gravitational time dilation is closely related to gravitational redshift, [4] in which the closer a body emitting light of constant frequency is to a gravitating body, the more its time is slowed by gravitational time dilation, and the lower (more "redshifted") would seem to be the frequency of the emitted light, as measured by a fixed observer.
Newton's laws are often stated in terms of point or particle masses, that is, bodies whose volume is negligible. This is a reasonable approximation for real bodies when the motion of internal parts can be neglected, and when the separation between bodies is much larger than the size of each.
The gravity loss is the difference between these figures, which is gt. As a proportion of delta-v, the gravity loss is g/a. A very large thrust over a very short time will achieve a desired speed increase with little gravity loss. On the other hand, if a is only slightly greater than g, the gravity loss is a large proportion of delta-v. Gravity ...