Search results
Results from the WOW.Com Content Network
Liquid hydrogen also has a much higher specific energy than gasoline, natural gas, or diesel. [12] The density of liquid hydrogen is only 70.85 kg/m 3 (at 20 K), a relative density of just 0.07. Although the specific energy is more than twice that of other fuels, this gives it a remarkably low volumetric energy density, many fold lower.
The vast majority of current industrial hydrogen production is from natural gas in the steam reforming process, or from the partial oxidation of coal or heavy hydrocarbons. The majority [citation needed] of the hydrogen produced through electrolysis is a side product in the production of chlorine and caustic soda.
Production of hydrogen from water is energy intensive. Usually, the electricity consumed is more valuable than the hydrogen produced, so this method has not been widely used. In contrast with low-temperature electrolysis, high-temperature electrolysis (HTE) of water converts more of the initial heat energy into chemical energy (hydrogen ...
Parts-per-million cube of relative abundance by mass of elements in an average adult human body down to 1 ppm. About 99% of the mass of the human body is made up of six elements: oxygen, carbon, hydrogen, nitrogen, calcium, and phosphorus. Only about 0.85% is composed of another five elements: potassium, sulfur, sodium, chlorine, and magnesium ...
To absorb hydrogen, the dehydrated form of LOHC (an unsaturated, mostly aromatic compound) reacts with the hydrogen in a hydrogenation reaction. The hydrogenation is an exothermic reaction and is carried out at elevated pressures (approx. 30-50 bar) and temperatures of approx. 150-200°C in the presence of a catalyst.
As of 2020, estimated costs of production are $1–1.80/kg for grey hydrogen and blue hydrogen, [177] and $2.50–6.80 for green hydrogen. [ 177 ] 94 million tonnes of grey hydrogen are produced globally using fossil fuels as of 2022, primarily natural gas, and are therefore a significant source of greenhouse gas emissions.
Fermilab's disused 15-foot (4.57 m) bubble chamber The first tracks observed in John Wood's 1.5-inch (3.8 cm) liquid hydrogen bubble chamber, in 1954.. A bubble chamber is a vessel filled with a superheated transparent liquid (most often liquid hydrogen) used to detect electrically charged particles moving through it.
Rocket fuel: Liquid hydrogen and liquid oxygen together serve as cryogenic propellants in liquid-propellant rockets, as in the Space Shuttle main engines. NASA has investigated the use of rocket propellant made from atomic hydrogen, boron or carbon that is frozen into solid molecular hydrogen particles suspended in liquid helium.