enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Kruskal–Wallis test - Wikipedia

    en.wikipedia.org/wiki/KruskalWallis_test

    The parametric equivalent of the KruskalWallis test is the one-way analysis of variance (ANOVA). A significant KruskalWallis test indicates that at least one sample stochastically dominates one other sample. The test does not identify where this stochastic dominance occurs or for how many pairs of groups stochastic dominance obtains.

  3. SOFA Statistics - Wikipedia

    en.wikipedia.org/wiki/SOFA_Statistics

    The main statistical tests available are Independent and Paired t-tests, Wilcoxon signed ranks, Mann–Whitney U, Pearson's chi squared, Kruskal Wallis H, one-way ANOVA, Spearman's R, and Pearson's R. Nested tables can be produced with row and column percentages, totals, standard deviation, mean, median, lower and upper quartiles, and sum.

  4. Nonparametric statistics - Wikipedia

    en.wikipedia.org/wiki/Nonparametric_statistics

    KruskalWallis one-way analysis of variance by ranks: tests whether > 2 independent samples are drawn from the same distribution. Kuiper's test: tests whether a sample is drawn from a given distribution, sensitive to cyclic variations such as day of the week. Logrank test: compares survival distributions of two right-skewed, censored samples.

  5. Jonckheere's trend test - Wikipedia

    en.wikipedia.org/wiki/Jonckheere's_Trend_Test

    In statistics, the Jonckheere trend test [1] (sometimes called the Jonckheere–Terpstra [2] test) is a test for an ordered alternative hypothesis within an independent samples (between-participants) design. It is similar to the Kruskal-Wallis test in that the null hypothesis is that several independent samples are from the same population ...

  6. Talk:Kruskal–Wallis test - Wikipedia

    en.wikipedia.org/wiki/Talk:KruskalWallis_test

    The Kruskal-Wallis test is indeed, in its most general application, a test of the null hypothesis that there is no stochastic dominance between any of the groups tested (i.e. H0: P(X i > X j) = 0.5 for all groups i and j, with HA: P(X i > X j) ≠ 0.5 for at least one i ≠ j). These hypotheses, and this test are not about means. I have cleaned ...

  7. Van der Waerden test - Wikipedia

    en.wikipedia.org/wiki/Van_der_Waerden_test

    The most common non-parametric test for the one-factor model is the Kruskal-Wallis test. The Kruskal-Wallis test is based on the ranks of the data. The advantage of the Van Der Waerden test is that it provides the high efficiency of the standard ANOVA analysis when the normality assumptions are in fact satisfied, but it also provides the ...

  8. Multiple comparisons problem - Wikipedia

    en.wikipedia.org/wiki/Multiple_comparisons_problem

    The following table defines the possible outcomes when testing multiple null hypotheses. Suppose we have a number m of null hypotheses, denoted by: H 1, H 2, ..., H m. Using a statistical test, we reject the null hypothesis if the test is declared significant. We do not reject the null hypothesis if the test is non-significant.

  9. List of statistical tests - Wikipedia

    en.wikipedia.org/wiki/List_of_statistical_tests

    Statistical tests are used to test the fit between a hypothesis and the data. [ 1 ] [ 2 ] Choosing the right statistical test is not a trivial task. [ 1 ] The choice of the test depends on many properties of the research question.