Search results
Results from the WOW.Com Content Network
One interior angle in a regular triacontagon is 168 degrees, meaning that one exterior angle would be 12°. The triacontagon is the largest regular polygon whose interior angle is the sum of the interior angles of smaller polygons: 168° is the sum of the interior angles of the equilateral triangle (60°) and the regular pentagon (108°).
The interior angle concept can be extended in a consistent way to crossed polygons such as star polygons by using the concept of directed angles.In general, the interior angle sum in degrees of any closed polygon, including crossed (self-intersecting) ones, is then given by 180(n–2k)°, where n is the number of vertices, and the strictly positive integer k is the number of total (360 ...
These properties apply to all regular polygons, whether convex or star: A regular n-sided polygon has rotational symmetry of order n. All vertices of a regular polygon lie on a common circle (the circumscribed circle); i.e., they are concyclic points. That is, a regular polygon is a cyclic polygon.
Andreotti–Frankel theorem (algebraic geometry) Angle bisector theorem (Euclidean geometry) Ankeny–Artin–Chowla theorem (number theory) Anne's theorem ; Apéry's theorem (number theory) Apollonius's theorem (plane geometry) Appell–Humbert theorem (complex manifold) Arakelyan's theorem (complex analysis)
The internal angle of a simple polygon, at one of its vertices, is the angle spanned by the interior of the polygon at that vertex. A vertex is convex if its internal angle is less than π {\displaystyle \pi } (a straight angle, 180°) and concave if the internal angle is greater than π {\displaystyle \pi } .
In Euclidean geometry, the AA postulate states that two triangles are similar if they have two corresponding angles congruent. The AA postulate follows from the fact that the sum of the interior angles of a triangle is always equal to 180°. By knowing two angles, such as 32° and 64° degrees, we know that the next angle is 84°, because 180 ...
For each edge, the interior points are all on the same side of the line that the edge defines. The angle at each vertex contains all other vertices in its edges and interior. The polygon is the convex hull of its edges. Additional properties of convex polygons include: The intersection of two convex polygons is a convex polygon.
Consecutive interior angles are the two pairs of angles that: [4] [2] have distinct vertex points, lie on the same side of the transversal and; are both interior. Two lines are parallel if and only if the two angles of any pair of consecutive interior angles of any transversal are supplementary (sum to 180°).