Search results
Results from the WOW.Com Content Network
An example that reveals the interaction of the multiple negative and positive feedback loops is the activation of cyclin-dependent protein kinases, or Cdks14. Positive feedback loops play a role by switching cells from low to high Cdk-activity. The interaction between the two types of loops is evident in mitosis.
Closed loop control [24]: 186 is a feedback based mechanism of motor control, where any act on the environment creates some sort of change that affects future performance through feedback. Closed loop motor control is best suited to continuously controlled actions, but does not work quickly enough for ballistic actions.
One of the most common forms of biological oscillation is genetic oscillation, which can take place when a transcription factor binds and represses its own promoter.This type of regulatory system is able to successfully describe the NFkB-IkB and p53-Mdm52 biological oscillating systems.
Positive feedback loops have been used to describe aspects of the dynamics of change in biological evolution. For example, beginning at the macro level, Alfred J. Lotka (1945) argued that the evolution of the species was most essentially a matter of selection that fed back energy flows to capture more and more energy for use by living systems. [31]
Secondary feedback loops interact with this primary feedback loop. CLOCKWORK ORANGE (CWO) binds the E-boxes to act as a direct competitor of CYC-CLK, therefore inhibiting transcription. PAR-DOMAIN PROTEIN 1 ε (PDP1ε) is a feedback activator and VRILLE (VRI) is a feedback inhibitor of the Clk promoter, and their expression is activated by dCLK ...
The field is named after an example of circular causal feedback—that of steering a ship (the ancient Greek κυβερνήτης (kybernḗtēs) refers to the person who steers a ship). In steering a ship, the position of the rudder is adjusted in continual response to the effect it is observed as having, forming a feedback loop through which ...
Within molecular and cell biology, temporal feedback, also referred to as interlinked or interlocked feedback, is a biological regulatory motif in which fast and slow positive feedback loops are interlinked to create "all or none" switches. This interlinking produces separate, adjustable activation and de-activation times.
A control loop maintains a sensed variable at or near a reference value by means of the effects of its outputs upon that variable, as mediated by physical properties of the environment. In engineering control theory, reference values are set by a user outside the system. An example is a thermostat.