Search results
Results from the WOW.Com Content Network
A Mealy machine is a 6-tuple (,,,,,) consisting of the following: . a finite set of states; a start state (also called initial state) which is an element of a finite set called the input alphabet
The algorithmic state machine (ASM) is a method for designing finite-state machines (FSMs) originally developed by Thomas E. Osborne at the University of California, Berkeley (UCB) since 1960, [1] introduced to and implemented at Hewlett-Packard in 1968, formalized and expanded since 1967 and written about by Christopher R. Clare since 1970.
The use of a Mealy FSM leads often to a reduction of the number of states. The example in figure 7 shows a Mealy FSM implementing the same behaviour as in the Moore example (the behaviour depends on the implemented FSM execution model and will work, e.g., for virtual FSM but not for event-driven FSM). There are two input actions (I:): "start ...
In the state-transition table, all possible inputs to the finite-state machine are enumerated across the columns of the table, while all possible states are enumerated across the rows. If the machine is in the state S 1 (the first row) and receives an input of 1 (second column), the machine will stay in the state S 1.
Verilogger Extreme is a newer, compiled-code simulator that is Verilog-2001 compliant and much faster than Pro. Verilog-XL: Cadence Design Systems: V1995: The original Verilog simulator, Gateway Design's Verilog-XL was the first (and only, for a time) Verilog simulator to be qualified for ASIC (validation) sign-off.
In the theory of computation, a Moore machine is a finite-state machine whose current output values are determined only by its current state. This is in contrast to a Mealy machine, whose output values are determined both by its current state and by the values of its inputs. Like other finite state machines, in Moore machines, the input ...
Verilog-2001 is a significant upgrade from Verilog-95. First, it adds explicit support for (2's complement) signed nets and variables. Previously, code authors had to perform signed operations using awkward bit-level manipulations (for example, the carry-out bit of a simple 8-bit addition required an explicit description of the Boolean algebra ...
The pattern of events, states, and state transitions among those states can be abstracted and represented as a finite-state machine (FSM). The concept of a FSM is important in event-driven programming because it makes the event handling explicitly dependent on both the event-type and on the state of the system.