Ads
related to: area math problems geometry
Search results
Results from the WOW.Com Content Network
Many mathematical problems have been stated but not yet solved. These problems come from many areas of mathematics, such as theoretical physics, computer science, algebra, analysis, combinatorics, algebraic, differential, discrete and Euclidean geometries, graph theory, group theory, model theory, number theory, set theory, Ramsey theory, dynamical systems, and partial differential equations.
Area plays an important role in modern mathematics. In addition to its obvious importance in geometry and calculus, area is related to the definition of determinants in linear algebra, and is a basic property of surfaces in differential geometry. [8]
Main page; Contents; Current events; Random article; About Wikipedia; Contact us; Help; Learn to edit; Community portal; Recent changes; Upload file
Let p be an interior point of the disk, and let n be a multiple of 4 that is greater than or equal to 8. Form n sectors of the disk with equal angles by choosing an arbitrary line through p, rotating the line n / 2 − 1 times by an angle of 2 π / n radians, and slicing the disk on each of the resulting n / 2 lines.
The area thus obtained is referred to as the sofa constant. The exact value of the sofa constant is an open problem. The leading solution, by Joseph L. Gerver, has a value of approximately 2.2195. In November 2024, Jineon Baek posted an arXiv preprint claiming that Gerver's value is optimal, which if true, would solve the moving sofa problem. [2]
The number of points (n), chords (c) and regions (r G) for first 6 terms of Moser's circle problem. In geometry, the problem of dividing a circle into areas by means of an inscribed polygon with n sides in such a way as to maximise the number of areas created by the edges and diagonals, sometimes called Moser's circle problem (named after Leo Moser), has a solution by an inductive method.
Ads
related to: area math problems geometry