enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Hooke's law - Wikipedia

    en.wikipedia.org/wiki/Hooke's_law

    In physics, Hooke's law is an empirical law which states that the force (F) needed to extend or compress a spring by some distance (x) scales linearly with respect to that distance—that is, F s = kx, where k is a constant factor characteristic of the spring (i.e., its stiffness), and x is small compared to the total possible deformation of the spring.

  3. Anelasticity - Wikipedia

    en.wikipedia.org/wiki/Anelasticity

    Anelasticity is therefore by the existence of a part of time dependent reaction, in addition to the elastic one in the material considered. It is also usually a very small fraction of the total response and so, in this sense, the usual meaning of "anelasticity" as "without elasticity" is improper in a physical sense.

  4. Elasticity (physics) - Wikipedia

    en.wikipedia.org/wiki/Elasticity_(physics)

    For small strains, the measure of stress that is used is the Cauchy stress while the measure of strain that is used is the infinitesimal strain tensor; the resulting (predicted) material behavior is termed linear elasticity, which (for isotropic media) is called the generalized Hooke's law. Cauchy elastic materials and hypoelastic materials are ...

  5. Constitutive equation - Wikipedia

    en.wikipedia.org/wiki/Constitutive_equation

    The first constitutive equation (constitutive law) was developed by Robert Hooke and is known as Hooke's law.It deals with the case of linear elastic materials.Following this discovery, this type of equation, often called a "stress-strain relation" in this example, but also called a "constitutive assumption" or an "equation of state" was commonly used.

  6. Work hardening - Wikipedia

    en.wikipedia.org/wiki/Work_hardening

    This behavior in materials is described by Hooke's Law. Materials behave elastically until the deforming force increases beyond the elastic limit, which is also known as the yield stress. At that point, the material is permanently deformed and fails to return to its original shape when the force is removed.

  7. Elastic energy - Wikipedia

    en.wikipedia.org/wiki/Elastic_energy

    This constant is usually denoted as k (see also Hooke's Law) and depends on the geometry, cross-sectional area, undeformed length and nature of the material from which the coil is fashioned. Within a certain range of deformation, k remains constant and is defined as the negative ratio of displacement to the magnitude of the restoring force ...

  8. Lamé parameters - Wikipedia

    en.wikipedia.org/wiki/Lamé_parameters

    In homogeneous and isotropic materials, these define Hooke's law in 3D, = + ⁡ (), where σ is the stress tensor, ε the strain tensor, I the identity matrix and tr the trace function. Hooke's law may be written in terms of tensor components using index notation as σ i j = 2 μ ε i j + λ δ i j ε k k , {\displaystyle \sigma _{ij}=2\mu ...

  9. Bulk modulus - Wikipedia

    en.wikipedia.org/wiki/Bulk_modulus

    For a complex anisotropic solid such as wood or paper, these three moduli do not contain enough information to describe its behaviour, and one must use the full generalized Hooke's law. The reciprocal of the bulk modulus at fixed temperature is called the isothermal compressibility .