enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Axiom - Wikipedia

    en.wikipedia.org/wiki/Axiom

    Structuralist mathematics goes further, and develops theories and axioms (e.g. field theory, group theory, topology, vector spaces) without any particular application in mind. The distinction between an "axiom" and a "postulate" disappears. The postulates of Euclid are profitably motivated by saying that they lead to a great wealth of geometric ...

  3. List of axioms - Wikipedia

    en.wikipedia.org/wiki/List_of_axioms

    Together with the axiom of choice (see below), these are the de facto standard axioms for contemporary mathematics or set theory. They can be easily adapted to analogous theories, such as mereology. Axiom of extensionality; Axiom of empty set; Axiom of pairing; Axiom of union; Axiom of infinity; Axiom schema of replacement; Axiom of power set ...

  4. Foundations of mathematics - Wikipedia

    en.wikipedia.org/wiki/Foundations_of_mathematics

    This method resembles the modern axiomatic method but with a big philosophical difference: axioms and postulates were supposed to be true, being either self-evident or resulting from experiments, while no other truth than the correctness of the proof is involved in the axiomatic method. So, for Aristotle, a proved theorem is true, while in the ...

  5. Theory (mathematical logic) - Wikipedia

    en.wikipedia.org/wiki/Theory_(mathematical_logic)

    A theory is said to be a deductive theory if is an inductive class, which is to say that its content is based on some formal deductive system and that some of its elementary statements are taken as axioms. In a deductive theory, any sentence that is a logical consequence of one or more of the axioms is also a sentence of that theory. [1]

  6. Foundations of geometry - Wikipedia

    en.wikipedia.org/wiki/Foundations_of_geometry

    Logically, the axioms do not form a complete theory since one can add extra independent axioms without making the axiom system inconsistent. One can extend absolute geometry by adding different axioms about parallelism and get incompatible but consistent axiom systems, giving rise to Euclidean and hyperbolic geometry.

  7. First-order logic - Wikipedia

    en.wikipedia.org/wiki/First-order_logic

    A theory is complete if, for every formula in its signature, either that formula or its negation is a logical consequence of the axioms of the theory. Gödel's incompleteness theorem shows that effective first-order theories that include a sufficient portion of the theory of the natural numbers can never be both consistent and complete.

  8. Axiomatic system - Wikipedia

    en.wikipedia.org/wiki/Axiomatic_system

    An axiomatic system is said to be consistent if it lacks contradiction.That is, it is impossible to derive both a statement and its negation from the system's axioms. Consistency is a key requirement for most axiomatic systems, as the presence of contradiction would allow any statement to be proven (principle of explo

  9. Theory - Wikipedia

    en.wikipedia.org/wiki/Theory

    The logical positivists thought of scientific theories as deductive theories—that a theory's content is based on some formal system of logic and on basic axioms. In a deductive theory, any sentence which is a logical consequence of one or more of the axioms is also a sentence of that theory. [11] This is called the received view of theories.