Search results
Results from the WOW.Com Content Network
The Rayleigh bandwidth of a simple radar pulse is defined as the inverse of its duration. For example, a one-microsecond pulse has a Rayleigh bandwidth of one megahertz. [1] The essential bandwidth is defined as the portion of a signal spectrum in the frequency domain which contains most of the energy of the signal. [2]
The consumed bandwidth in bit/s, corresponds to achieved throughput or goodput, i.e., the average rate of successful data transfer through a communication path.The consumed bandwidth can be affected by technologies such as bandwidth shaping, bandwidth management, bandwidth throttling, bandwidth cap, bandwidth allocation (for example bandwidth allocation protocol and dynamic bandwidth ...
In the simple version above, the signal and noise are fully uncorrelated, in which case + is the total power of the received signal and noise together. A generalization of the above equation for the case where the additive noise is not white (or that the / is not constant with frequency over the bandwidth) is obtained by treating the channel as many narrow, independent Gaussian ...
The OSNR is the ratio between the signal power and the noise power in a given bandwidth. Most commonly a reference bandwidth of 0.1 nm is used. This bandwidth is independent of the modulation format, the frequency and the receiver. For instance an OSNR of 20 dB/0.1 nm could be given, even the signal of 40 GBit DPSK would not fit in this bandwidth.
The convention of "width" meaning "half maximum" is also widely used in signal processing to define bandwidth as "width of frequency range where less than half the signal's power is attenuated", i.e., the power is at least half the maximum.
In the late 1990s, this work was partially extended to cover signals for which the amount of occupied bandwidth is known but the actual occupied portion of the spectrum is unknown. [7] In the 2000s, a complete theory was developed (see the section Sampling below the Nyquist rate under additional restrictions below) using compressed sensing .
Fig 1: Typical example of Nyquist frequency and rate. They are rarely equal, because that would require over-sampling by a factor of 2 (i.e. 4 times the bandwidth). In signal processing, the Nyquist rate, named after Harry Nyquist, is a value equal to twice the highest frequency of a given function or signal.
An application of the channel capacity concept to an additive white Gaussian noise (AWGN) channel with B Hz bandwidth and signal-to-noise ratio S/N is the Shannon–Hartley theorem: C = B log 2 ( 1 + S N ) {\displaystyle C=B\log _{2}\left(1+{\frac {S}{N}}\right)\ }