Search results
Results from the WOW.Com Content Network
For a parametric equation of a parabola in general position see § As the affine image of the unit parabola. The implicit equation of a parabola is defined by an irreducible polynomial of degree two: + + + + + =, such that =, or, equivalently, such that + + is the square of a linear polynomial.
This is the equation of a parabola, so the path is parabolic. The axis of the parabola is vertical. If the projectile's position (x,y) and launch angle (θ or α) are known, the initial velocity can be found solving for v 0 in the afore-mentioned parabolic equation:
Parametric equations are commonly used in kinematics, where the trajectory of an object is represented by equations depending on time as the parameter. Because of this application, a single parameter is often labeled t ; however, parameters can represent other physical quantities (such as geometric variables) or can be selected arbitrarily for ...
The parabolic series nose shape is generated by rotating a segment of a parabola around a line parallel to its latus rectum. This construction is similar to that of the tangent ogive, except that a parabola is the defining shape rather than a circle. Just as it does on an ogive, this construction produces a nose shape with a sharp tip.
Define b by the equations c 2 = a 2 − b 2 for an ellipse and c 2 = a 2 + b 2 for a hyperbola. For a circle, c = 0 so a 2 = b 2, with radius r = a = b. For the parabola, the standard form has the focus on the x-axis at the point (a, 0) and the directrix the line with equation x = −a. In standard form the parabola will always pass through the ...
FX-9750GII Graphing Calculator. One of our favorite graphing calculators, the Casio FX-9750GII offers a lot of machine for the money. It can handle the needs of most students all the way through ...
For solving the cubic equation x 3 + m 2 x = n where n > 0, Omar Khayyám constructed the parabola y = x 2 /m, the circle that has as a diameter the line segment [0, n/m 2] on the positive x-axis, and a vertical line through the point where the circle and the parabola intersect above the x-axis.
Graph of Johnson's parabola (plotted in red) against Euler's formula, with the transition point indicated. The area above the curve indicates failure. The Johnson parabola creates a new region of failure. In structural engineering, Johnson's parabolic formula is an empirically based equation for calculating the critical buckling stress of a column.