enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Parabola - Wikipedia

    en.wikipedia.org/wiki/Parabola

    (Proof: straightforward calculation: If the points are on a parabola, one may translate the coordinates for having the equation =, then one has = + if the points are on the parabola.)

  3. Confocal conic sections - Wikipedia

    en.wikipedia.org/wiki/Confocal_conic_sections

    If this transformation is performed on each conic in an orthogonal net of confocal ellipses and hyperbolas, the limit is an orthogonal net of confocal parabolas facing opposite directions. Every parabola with focus at the origin and x-axis as its axis of symmetry is the locus of points satisfying the equation

  4. Conic section - Wikipedia

    en.wikipedia.org/wiki/Conic_section

    Define b by the equations c 2 = a 2 − b 2 for an ellipse and c 2 = a 2 + b 2 for a hyperbola. For a circle, c = 0 so a 2 = b 2, with radius r = a = b. For the parabola, the standard form has the focus on the x-axis at the point (a, 0) and the directrix the line with equation x = −a. In standard form the parabola will always pass through the ...

  5. Completing the square - Wikipedia

    en.wikipedia.org/wiki/Completing_the_square

    In contrast, the graph of the function f(x) + k = x 2 + k is a parabola shifted upward by k whose vertex is at (0, k), as shown in the center figure. Combining both horizontal and vertical shifts yields f(x − h) + k = (x − h) 2 + k is a parabola shifted to the right by h and upward by k whose vertex is at (h, k), as shown in the bottom figure.

  6. Quadrature of the Parabola - Wikipedia

    en.wikipedia.org/wiki/Quadrature_of_the_Parabola

    Archimedes' first proof of the area of a parabolic segment. Conic sections such as the parabola were already well known in Archimedes' time thanks to Menaechmus a century earlier. However, before the advent of the differential and integral calculus, there were no easy means to find the area of a conic section. Archimedes provides the first ...

  7. Universal parabolic constant - Wikipedia

    en.wikipedia.org/wiki/Universal_parabolic_constant

    The universal parabolic constant is the red length divided by the green length. The universal parabolic constant is a mathematical constant.. It is defined as the ratio, for any parabola, of the arc length of the parabolic segment formed by the latus rectum to the focal parameter.

  8. Paraboloid - Wikipedia

    en.wikipedia.org/wiki/Paraboloid

    In this position, the hyperbolic paraboloid opens downward along the x-axis and upward along the y-axis (that is, the parabola in the plane x = 0 opens upward and the parabola in the plane y = 0 opens downward). Any paraboloid (elliptic or hyperbolic) is a translation surface, as it can be generated by a moving parabola directed by a second ...

  9. Pole and polar - Wikipedia

    en.wikipedia.org/wiki/Pole_and_polar

    The concepts of pole, polar and reciprocation can be generalized from circles to other conic sections which are the ellipse, hyperbola and parabola. This generalization is possible because conic sections result from a reciprocation of a circle in another circle, and the properties involved, such as incidence and the cross-ratio , are preserved ...