Search results
Results from the WOW.Com Content Network
In electrical engineering, the armature is the winding (or set of windings) of an electric machine which carries alternating current. [1] The armature windings conduct AC even on DC machines, due to the commutator action (which periodically reverses current direction) or due to electronic commutation, as in brushless DC motors .
The stator consists of field windings while the rotor (also called the armature) consists of an armature winding. [4] When both the armature and the field windings are excited by a DC supply, current flows through the windings and a magnetic flux proportional to the current is produced. When the flux from the field interacts with the flux from ...
For a single armature winding, when the shaft has made one-half complete turn, the winding is now connected so that current flows through it in the opposite of the initial direction. In a motor, the armature current causes the fixed magnetic field to exert a rotational force, or a torque, on the winding to make it turn. In a generator, the ...
The speed of a DC motor is controlled by varying the voltage fed to the generator field windings, V gf, which varies the output voltage of the generator. The varied output voltage will change the voltage of the motor, since they are connected directly through the armature. Consequently, changing the V gf will control the speed of the motor.
The DC motor's input voltage must overcome the counter emf as well as the voltage drop created by the armature current across the motor resistance, that is, the combined resistance across the brushes, armature winding and series field winding, if any: V m = E b + R m I a [8] [9]
Since the shapes of all windings are the same, the amount of the lines of force will be cut at the same amount in the same direction at the same time in all windings. This creates in phase AC output for these 4 windings. As a result, the output voltage is increased 4 time as shown in the sine wave in the diagram. [4]
The fixed field windings consist of tightly wound coils of wire fitted inside the motor case. The armature is another set of coils wound round a central shaft and is connected to the field windings through "brushes" which are spring-loaded contacts pressing against an extension of the armature called the commutator. The commutator collects all ...
Generator separately excited by battery Self exciting generators Series on left, shunt on right. A shunt generator is a type of electric generator in which field winding and armature winding are connected in parallel, and in which the armature supplies both the load current and the field current for the excitation (generator is therefore self excited).