Search results
Results from the WOW.Com Content Network
In computer science, Merge Sort (also commonly spelled as mergesort and as merge-sort [2]) is an efficient, general-purpose, and comparison-based sorting algorithm. Most implementations produce a stable sort , which means that the relative order of equal elements is the same in the input and output.
An early two-subproblem D&C algorithm that was specifically developed for computers and properly analyzed is the merge sort algorithm, invented by John von Neumann in 1945. [ 7 ] Another notable example is the algorithm invented by Anatolii A. Karatsuba in 1960 [ 8 ] that could multiply two n - digit numbers in O ( n log 2 3 ...
The merge algorithm plays a critical role in the merge sort algorithm, a comparison-based sorting algorithm. Conceptually, the merge sort algorithm consists of two steps: Recursively divide the list into sublists of (roughly) equal length, until each sublist contains only one element, or in the case of iterative (bottom up) merge sort, consider ...
Merge sort. In computer science, a sorting algorithm is an algorithm that puts elements of a list into an order.The most frequently used orders are numerical order and lexicographical order, and either ascending or descending.
Sorting algorithm – an area where there is a great deal of performance analysis of various algorithms. Search data structure – any data structure that allows the efficient retrieval of specific items; Worst-case circuit analysis; Smoothed analysis; Interval finite element; Big O notation
External sorting algorithms generally fall into two types, distribution sorting, which resembles quicksort, and external merge sort, which resembles merge sort. External merge sort typically uses a hybrid sort-merge strategy. In the sorting phase, chunks of data small enough to fit in main memory are read, sorted, and written out to a temporary ...
Its primary application is the approximation of the running time of many divide-and-conquer algorithms. For example, in the merge sort , the number of comparisons required in the worst case, which is roughly proportional to its runtime, is given recursively as T ( 1 ) = 0 {\displaystyle T(1)=0} and
External sorting is required when the data being sorted do not fit into the main memory of a computing device (usually RAM) and instead they must reside in the slower external memory (usually a hard drive). k-way merge algorithms usually take place in the second stage of external sorting algorithms, much like they do for merge sort.