Search results
Results from the WOW.Com Content Network
The unit of activity is the becquerel (symbol Bq), which is defined equivalent to reciprocal seconds (symbol s-1). The older, non-SI unit of activity is the curie (Ci), which is 3.7 × 10 10 radioactive decays per second. Another unit of activity is the rutherford, which is defined as 1 × 10 6 radioactive decays per second.
The following table shows radiation quantities in SI and non-SI units. W R (formerly 'Q' factor) is a factor that scales the biological effect for different types of radiation, relative to x-rays (e.g. 1 for beta radiation, 20 for alpha radiation, and a complicated function of energy for neutrons). In general, conversion between rates of ...
If the radiation measured has dropped by half between the 4 hour sample and the 24 hour sample we might think that the concentration of compound in that organ has dropped by half; but applying the decay correct we see that the concentration is 0.5*2.82 so it has actually increased by 40% in that period.
The activity of a sample decreases with time because of decay. The rules of radioactive decay may be used to convert activity to an actual number of atoms. They state that 1 Ci of radioactive atoms would follow the expression N (atoms) × λ (s −1) = 1 Ci = 3.7 × 10 10 Bq, and so N = 3.7 × 10 10 Bq / λ, where λ is the decay constant in s ...
Counts is the number of events detected, but dose rate relates to the amount of ionising energy deposited in the sensor of the radiation detector. The conversion calculation is dependent on the radiation energy levels, the type of radiation being detected and the radiometric characteristic of the detector. [1]
A material containing unstable nuclei is considered radioactive. Three of the most common types of decay are alpha, beta, and gamma decay. The weak force is the mechanism that is responsible for beta decay, while the other two are governed by the electromagnetic and nuclear forces. [1] Radioactive decay is a random process at the level of ...
In nuclear physics, the Bateman equation is a mathematical model describing abundances and activities in a decay chain as a function of time, based on the decay rates and initial abundances. The model was formulated by Ernest Rutherford in 1905 [1] and the analytical solution was provided by Harry Bateman in 1910. [2]
The molar weight is 59.93. The half life T of 5.27 year corresponds to the activity A = N [ ln(2) / T ], where N is the number of atoms per mol, and T is the half-life. Taking care of the units the radiation power for 60 Co is 17.9 W/g Radiation power in W/g for several isotopes: 60 Co: 17.9 238 Pu: 0.57 137 Cs: 0.6 241 Am: 0.1 210 Po: 140 (T ...