Search results
Results from the WOW.Com Content Network
The dimension of the column space is called the rank of the matrix and is at most min(m, n). [1] A definition for matrices over a ring is also possible. The row space is defined similarly. The row space and the column space of a matrix A are sometimes denoted as C(A T) and C(A) respectively. [2] This article considers matrices of real numbers
The column rank of A is the dimension of the column space of A, while the row rank of A is the dimension of the row space of A. A fundamental result in linear algebra is that the column rank and the row rank are always equal. (Three proofs of this result are given in § Proofs that column rank = row rank, below.)
The transpose (indicated by T) of any row vector is a column vector, and the transpose of any column vector is a row vector: […] = [] and [] = […]. The set of all row vectors with n entries in a given field (such as the real numbers ) forms an n -dimensional vector space ; similarly, the set of all column vectors with m entries forms an m ...
The corresponding columns of the original matrix are a basis for the column space. See the article on column space for an example. This produces a basis for the column space that is a subset of the original column vectors. It works because the columns with pivots are a basis for the column space of the echelon form, and row reduction does not ...
The left null space of A is the same as the kernel of A T. The left null space of A is the orthogonal complement to the column space of A, and is dual to the cokernel of the associated linear transformation. The kernel, the row space, the column space, and the left null space of A are the four fundamental subspaces associated with the matrix A.
Every finite-dimensional matrix has a rank decomposition: Let be an matrix whose column rank is .Therefore, there are linearly independent columns in ; equivalently, the dimension of the column space of is .
The term range space has multiple meanings in mathematics: In linear algebra , it refers to the column space of a matrix, the set of all possible linear combinations of its column vectors. In computational geometry , it refers to a hypergraph , a pair (X, R) where each r in R is a subset of X.
For a finite-dimensional inner product space of dimension , the orthogonal complement of a -dimensional subspace is an ()-dimensional subspace, and the double orthogonal complement is the original subspace: =.