Search results
Results from the WOW.Com Content Network
The smallest integer m > 1 such that p n # + m is a prime number, where the primorial p n # is the product of the first n prime numbers. A005235 Semiperfect numbers
This sequence of numbers of parents is the Fibonacci sequence. The number of ancestors at each level, F n, is the number of female ancestors, which is F n−1, plus the number of male ancestors, which is F n−2. [90] [91] This is under the unrealistic assumption that the ancestors at each level are otherwise unrelated.
The look-and-say sequence is also popularly known as the Morris Number Sequence, after cryptographer Robert Morris, and the puzzle "What is the next number in the sequence 1, 11, 21, 1211, 111221?" is sometimes referred to as the Cuckoo's Egg , from a description of Morris in Clifford Stoll 's book The Cuckoo's Egg .
There are a number of ways to denote a sequence, some of which are more useful for specific types of sequences. One way to specify a sequence is to list all its elements. For example, the first four odd numbers form the sequence (1, 3, 5, 7). This notation is used for infinite sequences as well.
In words, the sequence of Pell numbers starts with 0 and 1, and then each Pell number is the sum of twice the previous Pell number, plus the Pell number before that. The first few terms of the sequence are 0, 1, 2, 5, 12, 29, 70, 169, 408, 985, 2378, 5741, 13860, … (sequence A000129 in the OEIS).
The sequence also has a variety of relationships with the Fibonacci numbers, like the fact that adding any two Fibonacci numbers two terms apart in the Fibonacci sequence results in the Lucas number in between. [3] The first few Lucas numbers are 2, 1, 3, 4, 7, 11, 18, 29, 47, 76, 123, 199, 322, 521, 843, 1364, 2207, 3571, 5778, 9349, ... .
P(n) is the number of ways of writing n + 2 as an ordered sum in which each term is either 2 or 3 (i.e. the number of compositions of n + 2 in which each term is either 2 or 3). For example, P(6) = 4, and there are 4 ways to write 8 as an ordered sum of 2s and 3s: 2 + 2 + 2 + 2 ; 2 + 3 + 3 ; 3 + 2 + 3 ; 3 + 3 + 2
An integer sequence is computable if there exists an algorithm that, given n, calculates a n, for all n > 0. The set of computable integer sequences is countable.The set of all integer sequences is uncountable (with cardinality equal to that of the continuum), and so not all integer sequences are computable.