Search results
Results from the WOW.Com Content Network
The rectangularly-framed section has deformed into a parallelogram (shear strain), but the triangular roof trusses have resisted the shear stress and remain undeformed. In continuum mechanics, shearing refers to the occurrence of a shear strain, which is a deformation of a material substance in which parallel internal surfaces slide past one another.
The formula to calculate average shear stress τ or force per unit area is: [1] =, where F is the force applied and A is the cross-sectional area.. The area involved corresponds to the material face parallel to the applied force vector, i.e., with surface normal vector perpendicular to the force.
This deformation is differentiated from a pure shear by virtue of the presence of a rigid rotation of the material. [2] [3] When rubber deforms under simple shear, its stress-strain behavior is approximately linear. [4] A rod under torsion is a practical example for a body under simple shear. [5]
Fluids that have a linear shear stress/shear strain relationship but require a finite yield stress before they begin to flow (the plot of shear stress against shear strain does not pass through the origin) are called Bingham plastics. Several examples are clay suspensions, drilling mud, toothpaste, mayonnaise, chocolate, and mustard.
Strain tensor is symmetric and has three linear strain and three shear strain (Cartesian) components." [6] ISO 80000-4 further defines linear strain as the "quotient of change in length of an object and its length" and shear strain as the "quotient of parallel displacement of two surfaces of a layer and the thickness of the layer". [6]
Euler–Bernoulli beam theory does not account for the effects of transverse shear strain. As a result, it underpredicts deflections and overpredicts natural frequencies. For thin beams (beam length to thickness ratios of the order 20 or more) these effects are of minor importance. For thick beams, however, these effects can be significant.
The relevant information is the area of the material being sheared, i.e. the area across which the shearing action takes place, and the shear strength of the material. A round bar of steel is used as an example. The shear strength is calculated from the tensile strength using a factor which relates the two strengths.
For a Newtonian fluid, the stress exerted by the fluid in resistance to the shear is proportional to the strain rate or shear rate. A simple example of a shear flow is Couette flow, in which a fluid is trapped between two large parallel plates, and one plate is moved with some relative velocity to the other. Here, the strain rate is simply the ...