enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Primary line constants - Wikipedia

    en.wikipedia.org/wiki/Primary_line_constants

    The secondary line constants can be used, for instance, to compare the characteristics of a waveguide to a copper line, whereas the primary constants have no meaning for a waveguide. The constants are conductor resistance and inductance, and insulator capacitance and conductance, which are by convention given the symbols R, L, C, and G ...

  3. Telegrapher's equations - Wikipedia

    en.wikipedia.org/wiki/Telegrapher's_equations

    Equivalent circuit of an unbalanced transmission line (such as coaxial cable) where: 2/Z o is the trans-admittance of VCCS (Voltage Controlled Current Source), x is the length of transmission line, Z(s) ≡ Z o (s) is the characteristic impedance, T(s) is the propagation function, γ(s) is the propagation "constant", s ≡ j ω, and j 2 ≡ −1.

  4. Heaviside condition - Wikipedia

    en.wikipedia.org/wiki/Heaviside_condition

    Heaviside's model of a transmission line. A transmission line can be represented as a distributed-element model of its primary line constants as shown in the figure. The primary constants are the electrical properties of the cable per unit length and are: capacitance C (in farads per meter), inductance L (in henries per meter), series resistance R (in ohms per meter), and shunt conductance G ...

  5. Propagation constant - Wikipedia

    en.wikipedia.org/wiki/Propagation_constant

    The primary coefficients are the physical properties of the line, namely R,C,L and G, from which the secondary coefficients may be derived using the telegrapher's equation. In the field of transmission lines, the term transmission coefficient has a different meaning despite the similarity of name: it is the companion of the reflection coefficient .

  6. Characteristic impedance - Wikipedia

    en.wikipedia.org/wiki/Characteristic_impedance

    The voltage and current phasors on the line are related by the characteristic impedance as: = (+) (+) = () where the subscripts (+) and (−) mark the separate constants for the waves traveling forward (+) and backward (−). The rightmost expression has a negative sign because the current in the backward wave has the opposite direction to ...

  7. Free-space path loss - Wikipedia

    en.wikipedia.org/wiki/Free-space_path_loss

    Derivation of the dB version of the Path Loss Equation; Path loss Pages for free space and real world – includes free-space loss calculator; Hilt, A. “Throughput Estimation of K-zone Gbps Radio Links Operating in the E-band”, Journal of Microelectronics, Electronic Components and Materials, Vol.52, No.1, pp.29-39, 2022.

  8. Distributed-element model - Wikipedia

    en.wikipedia.org/wiki/Distributed-element_model

    The primary line constants are normally taken to be constant with position along the line leading to a particularly simple analysis and model. However, this is not always the case, variations in physical dimensions along the line will cause variations in the primary constants, that is, they have now to be described as functions of distance.

  9. List of equations in quantum mechanics - Wikipedia

    en.wikipedia.org/wiki/List_of_equations_in...

    A fundamental physical constant occurring in quantum mechanics is the Planck constant, h. A common abbreviation is ħ = h /2 π , also known as the reduced Planck constant or Dirac constant . Quantity (common name/s)