Search results
Results from the WOW.Com Content Network
The secondary line constants can be used, for instance, to compare the characteristics of a waveguide to a copper line, whereas the primary constants have no meaning for a waveguide. The constants are conductor resistance and inductance, and insulator capacitance and conductance, which are by convention given the symbols R, L, C, and G ...
Equivalent circuit of an unbalanced transmission line (such as coaxial cable) where: 2/Z o is the trans-admittance of VCCS (Voltage Controlled Current Source), x is the length of transmission line, Z(s) ≡ Z o (s) is the characteristic impedance, T(s) is the propagation function, γ(s) is the propagation "constant", s ≡ j ω, and j 2 ≡ −1.
Heaviside's model of a transmission line. A transmission line can be represented as a distributed-element model of its primary line constants as shown in the figure. The primary constants are the electrical properties of the cable per unit length and are: capacitance C (in farads per meter), inductance L (in henries per meter), series resistance R (in ohms per meter), and shunt conductance G ...
The constants listed here are known values of physical constants expressed in SI units; that is, physical quantities that are generally believed to be universal in nature and thus are independent of the unit system in which they are measured. Many of these are redundant, in the sense that they obey a known relationship with other physical ...
The primary coefficients are the physical properties of the line, namely R,C,L and G, from which the secondary coefficients may be derived using the telegrapher's equation. In the field of transmission lines, the term transmission coefficient has a different meaning despite the similarity of name: it is the companion of the reflection coefficient .
Pages for logged out editors learn more. Contributions; Talk; Primary line coefficients
The voltage and current phasors on the line are related by the characteristic impedance as: = (+) (+) = () where the subscripts (+) and (−) mark the separate constants for the waves traveling forward (+) and backward (−). The rightmost expression has a negative sign because the current in the backward wave has the opposite direction to ...
Continuous charge distribution. The volume charge density ρ is the amount of charge per unit volume (cube), surface charge density σ is amount per unit surface area (circle) with outward unit normal nĚ‚, d is the dipole moment between two point charges, the volume density of these is the polarization density P.