enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Regularization perspectives on support vector machines

    en.wikipedia.org/wiki/Regularization...

    SVM algorithms categorize binary data, with the goal of fitting the training set data in a way that minimizes the average of the hinge-loss function and L2 norm of the learned weights. This strategy avoids overfitting via Tikhonov regularization and in the L2 norm sense and also corresponds to minimizing the bias and variance of our estimator ...

  3. Kernel method - Wikipedia

    en.wikipedia.org/wiki/Kernel_method

    The function : is often referred to as a kernel or a kernel function. The word "kernel" is used in mathematics to denote a weighting function for a weighted sum or integral . Certain problems in machine learning have more structure than an arbitrary weighting function k {\displaystyle k} .

  4. Hinge loss - Wikipedia

    en.wikipedia.org/wiki/Hinge_loss

    The plot shows that the Hinge loss penalizes predictions y < 1, corresponding to the notion of a margin in a support vector machine. In machine learning, the hinge loss is a loss function used for training classifiers. The hinge loss is used for "maximum-margin" classification, most notably for support vector machines (SVMs). [1]

  5. Support vector machine - Wikipedia

    en.wikipedia.org/wiki/Support_vector_machine

    The soft-margin support vector machine described above is an example of an empirical risk minimization (ERM) algorithm for the hinge loss. Seen this way, support vector machines belong to a natural class of algorithms for statistical inference, and many of its unique features are due to the behavior of the hinge loss.

  6. Least-squares support vector machine - Wikipedia

    en.wikipedia.org/wiki/Least-squares_support...

    Least-squares support-vector machines (LS-SVM) for statistics and in statistical modeling, are least-squares versions of support-vector machines (SVM), which are a set of related supervised learning methods that analyze data and recognize patterns, and which are used for classification and regression analysis.

  7. Ranking SVM - Wikipedia

    en.wikipedia.org/wiki/Ranking_SVM

    The ranking SVM algorithm is a learning retrieval function that employs pairwise ranking methods to adaptively sort results based on how 'relevant' they are for a specific query. The ranking SVM function uses a mapping function to describe the match between a search query and the features of each of the possible results.

  8. Fisher kernel - Wikipedia

    en.wikipedia.org/wiki/Fisher_kernel

    The Fisher kernel can result in a compact and dense representation, which is more desirable for image classification [4] and retrieval [5] [6] problems. The Fisher Vector (FV), a special, approximate, and improved case of the general Fisher kernel, [7] is an image representation obtained by pooling local image features. The FV encoding stores ...

  9. Cover's theorem - Wikipedia

    en.wikipedia.org/wiki/Cover's_Theorem

    Cover's theorem is a statement in computational learning theory and is one of the primary theoretical motivations for the use of non-linear kernel methods in machine learning applications. It is so termed after the information theorist Thomas M. Cover who stated it in 1965, referring to it as counting function theorem .

  1. Related searches why svm kernel function is bad for kids ppt free presentation background

    svm kernel functionkernel in math
    svm kernel methodkernel function