enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Volumetric flow rate - Wikipedia

    en.wikipedia.org/wiki/Volumetric_flow_rate

    In most contexts a mention of rate of fluid flow is likely to refer to the volumetric rate. In hydrometry, the volumetric flow rate is known as discharge. Volumetric flow rate should not be confused with volumetric flux, as defined by Darcy's law and represented by the symbol q, with units of m 3 /(m 2 ·s), that is, m·s −1. The integration ...

  3. Hazen–Williams equation - Wikipedia

    en.wikipedia.org/wiki/Hazen–Williams_equation

    The equation for head loss in pipes, also referred to as slope, S, expressed in "feet per foot of length" vs. in 'psi per foot of length' as described above, with the inside pipe diameter, d, being entered in feet vs. inches, and the flow rate, Q, being entered in cubic feet per second, cfs, vs. gallons per minute, gpm, appears very similar.

  4. Flow coefficient - Wikipedia

    en.wikipedia.org/wiki/Flow_coefficient

    A simplified version of the definition is: The k v factor of a valve indicates "The water flow in m 3 /h, at a pressure drop across the valve of 1 kgf/cm 2 when the valve is completely open. The complete definition also says that the flow medium must have a density of 1000 kg/m 3 and a kinematic viscosity of 10 −6 m 2 /s, e.g. water. [clarify]

  5. Reynolds number - Wikipedia

    en.wikipedia.org/wiki/Reynolds_number

    Q is the volumetric flow rate (m 3 /s), A is the pipe's cross-sectional area ... Onset of turbulent flow ~ 2.3 × 10 3 to 5.0 × 10 4 for pipe flow to 10 6 for ...

  6. Flow measurement - Wikipedia

    en.wikipedia.org/wiki/Flow_measurement

    This depth is converted to a flow rate according to a theoretical formula of the form = where is the flow rate, is a constant, is the water level, and is an exponent which varies with the device used; or it is converted according to empirically derived level/flow data points (a "flow curve"). The flow rate can then be integrated over time into ...

  7. Hagen–Poiseuille equation - Wikipedia

    en.wikipedia.org/wiki/Hagen–Poiseuille_equation

    Using ideal gas equation of state for constant temperature process (i.e., / is constant) and the conservation of mass flow rate (i.e., ˙ = is constant), the relation Qp = Q 1 p 1 = Q 2 p 2 can be obtained. Over a short section of the pipe, the gas flowing through the pipe can be assumed to be incompressible so that Poiseuille law can be used ...

  8. Hardy Cross method - Wikipedia

    en.wikipedia.org/wiki/Hardy_Cross_method

    The Hardy Cross method can be used to calculate the flow distribution in a pipe network. Consider the example of a simple pipe flow network shown at the right. For this example, the in and out flows will be 10 liters per second. We will consider n to be 2, and the head loss per unit flow r, and initial flow guess for each pipe as follows:

  9. Pipe flow - Wikipedia

    en.wikipedia.org/wiki/Pipe_flow

    Not all flow within a closed conduit is considered pipe flow. Storm sewers are closed conduits but usually maintain a free surface and therefore are considered open-channel flow. The exception to this is when a storm sewer operates at full capacity, and then can become pipe flow. Energy in pipe flow is expressed as head and is defined by the ...