Search results
Results from the WOW.Com Content Network
For example, the complex numbers C form a two-dimensional vector space over the real numbers R. Likewise, the real numbers R form a vector space over the rational numbers Q which has (uncountably) infinite dimension, if a Hamel basis exists. [b] If V is a vector space over F it may also be regarded as vector space over K. The dimensions are ...
For any vector space V, the projection X × V → X makes the product X × V into a "trivial" vector bundle. Vector bundles over X are required to be locally a product of X and some (fixed) vector space V: for every x in X, there is a neighborhood U of x such that the restriction of π to π −1 (U) is isomorphic [nb 11] to the trivial bundle ...
If V is a vector space over a field K, a subset W of V is a linear subspace of V if it is a vector space over K for the operations of V.Equivalently, a linear subspace of V is a nonempty subset W such that, whenever w 1, w 2 are elements of W and α, β are elements of K, it follows that αw 1 + βw 2 is in W.
The basic and historically first class of spaces studied in functional analysis are complete normed vector spaces over the real or complex numbers. Such spaces are called Banach spaces . An important example is a Hilbert space , where the norm arises from an inner product.
For example, if V and also X itself are vector spaces over F, the set of linear maps X → V form a vector space over F with pointwise operations (often denoted Hom(X,V)). One such space is the dual space of X: the set of linear functionals X → F with addition and scalar multiplication defined pointwise.
The situation can be profitably compared to that which arises in the search for functions on the projective space P(V): in that setting, one would ideally like functions F on the vector space V which are polynomial in the coordinates of v ≠ 0 in V and satisfy the equation F(cv) = F(v) for all non-zero c. Unfortunately, the only such functions ...
In mathematical analysis, the spaces of test functions and distributions are topological vector spaces (TVSs) that are used in the definition and application of distributions. Test functions are usually infinitely differentiable complex -valued (or sometimes real -valued) functions on a non-empty open subset U ⊆ R n {\displaystyle U\subseteq ...
A scalar is an element of a field which is used to define a vector space.In linear algebra, real numbers or generally elements of a field are called scalars and relate to vectors in an associated vector space through the operation of scalar multiplication (defined in the vector space), in which a vector can be multiplied by a scalar in the defined way to produce another vector.