Search results
Results from the WOW.Com Content Network
For example, in North America, a unique split-phase system is used to supply to most premises that works by center tapping a 240 volt transformer. This system is able to concurrently provide 240 volts and 120 volts. Consequently, this allows homeowners to wire up both 240 V and 120 V circuits as they wish (as regulated by local building codes).
This standard established 120 volt nominal system and two ranges for service voltage and utilization voltage variations. [19] Today, virtually all American homes and businesses have access to 120 and 240 V at 60 Hz. Both voltages are available on the three wires (two "hot" legs of opposite phase and one "neutral" leg).
Most of the Americas use 60 Hz AC, the 120/240 volt split-phase system domestically and three phase for larger installations. North American transformers usually power homes at 240 volts, similar to Europe's 230 volts. It is the split-phase that allows use of 120 volts in the home. Japan's utility frequencies are 50 Hz and 60 Hz.
The output will usually be DC in the range 1.5–24 V. Power supplies that output either 100–120 V AC or 210–240 V AC are available; they are called inverters, due to the conversion from DC to AC rather than the voltage change. The output frequency and waveform of an inverter may not accurately replicate that supplied by mains electricity ...
Power is the rate at which energy is generated or consumed and hence is measured in units (e.g. watts) that represent energy per unit time. For example, when a light bulb with a power rating of 100 W is turned on for one hour, the energy used is 100 watt hours (W·h), 0.1 kilowatt hour, or 360 kJ .
The J1772 5-pin standard supports a wide range of single-phase (1φ) alternating current (AC) charging rates. They range from portable devices that can connect to a household NEMA 5-15 outlet that can deliver 1.44 kW (12 A @ 120 V) to hardwired equipment that can deliver up to 19.2 kW (80 A @ 240 V). [2]
A kilowatt-hour (unit symbol: kW⋅h or kW h; commonly written as kWh) is a non-SI unit of energy equal to 3.6 megajoules (MJ) in SI units, which is the energy delivered by one kilowatt of power for one hour. Kilowatt-hours are a common billing unit for electrical energy supplied by electric utilities.
In North America and northern South America, it is usually 120 volts, 60 hertz (Hz), but in Europe, Asia, Africa, and many other parts of the world, it is usually 230 volts, 50 Hz. [2] Aircraft often use 400 Hz power internally, so 50 Hz or 60 Hz to 400 Hz frequency conversion is needed for use in the ground power unit used to power the ...