Search results
Results from the WOW.Com Content Network
The power law is often used in wind power assessments [4] [5] where wind speeds at the height of a turbine ( 50 metres) must be estimated from near surface wind observations (~10 metres), or where wind speed data at various heights must be adjusted to a standard height [6] prior to use.
The power coefficient [9] C P (= P/P wind) is the dimensionless ratio of the extractable power P to the kinetic power P wind available in the undistributed stream. [ citation needed ] It has a maximum value C P max = 16/27 = 0.593 (or 59.3%; however, coefficients of performance are usually expressed as a decimal, not a percentage).
Measurements show that wind speed, (V (h) ) varies, according to a power law with height (h) above a non-zero measurement height datum (h 0 —e.g. at the height of the foot of a sail), using a reference wind speed measured at the datum height (V (h 0) ), as follows: [24] [25]
Roughness length is a parameter used in modeling the horizontal mean wind speed near the ground. In wind vertical profile such the log wind profile , the roughness length (with dimension of length and SI unit of metres) is equivalent to the height at which the wind speed theoretically becomes zero in the absence of wind-slowing obstacles and ...
Wind speed on the Beaufort scale is based on the empirical relationship: [6] v = 0.836 B 3/2 m/s; v = 1.625 B 3/2 knots (=) where v is the equivalent wind speed at 10 metres above the sea surface and B is Beaufort scale number.
When estimating wind loads on structures the terrains may be described as suburban or dense urban, for which the ranges are typically 0.1-0.5 m and 1-5 m respectively. [2] In order to estimate the mean wind speed at one height based on that at another (), the formula would be rearranged, [2]
For engineering purposes, the wind gradient is modeled as a simple shear exhibiting a vertical velocity profile varying according to a power law with a constant exponential coefficient based on surface type. The height above ground where surface friction has a negligible effect on wind speed is called the "gradient height" and the wind speed ...
An example of a wind turbine, this 3 bladed turbine is the classic design of modern wind turbines Wind turbine components : 1-Foundation, 2-Connection to the electric grid, 3-Tower, 4-Access ladder, 5-Wind orientation control (Yaw control), 6-Nacelle, 7-Generator, 8-Anemometer, 9-Electric or Mechanical Brake, 10-Gearbox, 11-Rotor blade, 12-Blade pitch control, 13-Rotor hub