Search results
Results from the WOW.Com Content Network
The two for-loops (line 7 and line 8) can be executed in parallel. The update of the next frontier (line 10) and the increase of distance (line 11) need to be atomic. Atomic operations are program operations that can only run entirely without interruption and pause. A PRAM Model. However, there are two problems in this simple parallelization.
For example, one can add N numbers either by a simple loop that adds each datum to a single variable, or by a D&C algorithm called pairwise summation that breaks the data set into two halves, recursively computes the sum of each half, and then adds the two sums. While the second method performs the same number of additions as the first and pays ...
In other words, the subcollection {B, D, F} is an exact cover, since every element is contained in exactly one of the sets B = {1, 4}, D = {3, 5, 6}, or F = {2, 7}.There are no more selected rows at level 3, thus the algorithm moves to the next branch at level 2…
A common algorithm design tactic is to divide a problem into sub-problems of the same type as the original, solve those sub-problems, and combine the results. This is often referred to as the divide-and-conquer method; when combined with a lookup table that stores the results of previously solved sub-problems (to avoid solving them repeatedly and incurring extra computation time), it can be ...
A graph exemplifying merge sort. Two red arrows starting from the same node indicate a split, while two green arrows ending at the same node correspond to an execution of the merge algorithm. The merge algorithm plays a critical role in the merge sort algorithm, a comparison-based sorting algorithm. Conceptually, the merge sort algorithm ...
The example graph, copied from above. These two variations of DFS visit the neighbors of each vertex in the opposite order from each other: the first neighbor of v visited by the recursive variation is the first one in the list of adjacent edges, while in the iterative variation the first visited neighbor is the last one in the list of adjacent ...
Batcher's odd–even mergesort [1] is a generic construction devised by Ken Batcher for sorting networks of size O(n (log n) 2) and depth O((log n) 2), where n is the number of items to be sorted.
Consider an N-dimensional quantum system S coupled to a bath B and described by the combined system-bath Hamiltonian as follows: ^ = ^ ^ + ^ ^ + ^, where the interaction Hamiltonian ^ is given in the usual way as ^ = ^ ^, and where ^ (^) act upon the system (bath) only, and ^ (^) is the system (bath) Hamiltonian, and ^ (^) is the identity operator acting on the system (bath).