enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Haynes Miller - Wikipedia

    en.wikipedia.org/wiki/Haynes_Miller

    Haynes Robert Miller (born January 29, 1948, in Princeton, New Jersey) [1] is an American mathematician specializing in algebraic topology.. Miller completed his undergraduate study at Harvard University and earned his PhD in 1974 under the supervision of John Coleman Moore at Princeton University with thesis Some Algebraic Aspects of the Adams–Novikov Spectral Sequence. [2]

  3. Topological modular forms - Wikipedia

    en.wikipedia.org/wiki/Topological_modular_forms

    In mathematics, topological modular forms (tmf) is the name of a spectrum that describes a generalized cohomology theory.In concrete terms, for any integer n there is a topological space , and these spaces are equipped with certain maps between them, so that for any topological space X, one obtains an abelian group structure on the set ⁡ of homotopy classes of continuous maps from X to .

  4. List of conjectures - Wikipedia

    en.wikipedia.org/wiki/List_of_conjectures

    Haynes Miller: Sullivan conjecture: classifying spaces: Miller proved the version on mapping BG to a finite complex. 1987: Grigory Margulis: Oppenheim conjecture: diophantine approximation: Margulis proved the conjecture with ergodic theory methods. 1989: Vladimir I. Chernousov: Weil's conjecture on Tamagawa numbers: algebraic groups

  5. Pinched torus - Wikipedia

    en.wikipedia.org/wiki/Pinched_torus

    In mathematics, and especially topology and differential geometry, a pinched torus (or croissant surface) is a kind of two-dimensional surface. It gets its name from its resemblance to a torus that has been pinched at a single point. A pinched torus is an example of an orientable, compact 2-dimensional pseudomanifold. [1]

  6. Sullivan conjecture - Wikipedia

    en.wikipedia.org/wiki/Sullivan_conjecture

    Miller's theorem generalizes to a version of Sullivan's conjecture in which the action on is allowed to be non-trivial. In, [ 3 ] Sullivan conjectured that η is a weak equivalence after a certain p-completion procedure due to A. Bousfield and D. Kan for the group G = Z / 2 {\displaystyle G=Z/2} .

  7. Eilenberg–Zilber theorem - Wikipedia

    en.wikipedia.org/wiki/Eilenberg–Zilber_theorem

    In mathematics, specifically in algebraic topology, the Eilenberg–Zilber theorem is an important result in establishing the link between the homology groups of a product space and those of the spaces and .

  8. Brouwer fixed-point theorem - Wikipedia

    en.wikipedia.org/wiki/Brouwer_fixed-point_theorem

    The Brouwer fixed point theorem was one of the early achievements of algebraic topology, and is the basis of more general fixed point theorems which are important in functional analysis. The case n = 3 first was proved by Piers Bohl in 1904 (published in Journal für die reine und angewandte Mathematik ). [ 14 ]

  9. Cobordism - Wikipedia

    en.wikipedia.org/wiki/Cobordism

    In geometric topology, cobordisms are intimately connected with Morse theory, and h-cobordisms are fundamental in the study of high-dimensional manifolds, namely surgery theory. In algebraic topology, cobordism theories are fundamental extraordinary cohomology theories, and categories of cobordisms are the domains of topological quantum field ...