Search results
Results from the WOW.Com Content Network
An alternative algorithm for topological sorting is based on depth-first search.The algorithm loops through each node of the graph, in an arbitrary order, initiating a depth-first search that terminates when it hits any node that has already been visited since the beginning of the topological sort or the node has no outgoing edges (i.e., a leaf node):
Maximum subarray problems arise in many fields, such as genomic sequence analysis and computer vision.. Genomic sequence analysis employs maximum subarray algorithms to identify important biological segments of protein sequences that have unusual properties, by assigning scores to points within the sequence that are positive when a motif to be recognized is present, and negative when it is not ...
LeetCode LLC, doing business as LeetCode, is an online platform for coding interview preparation. The platform provides coding and algorithmic problems intended for users to practice coding . [ 1 ] LeetCode has gained popularity among job seekers in the software industry and coding enthusiasts as a resource for technical interviews and coding ...
This algorithm can also be rewritten to use the Fast2Sum algorithm: [7] function KahanSum2(input) // Prepare the accumulator. var sum = 0.0 // A running compensation for lost low-order bits. var c = 0.0 // The array input has elements indexed for i = 1 to input.length do // c is zero the first time around.
Kahn's algorithm for topological sorting builds the vertex ordering directly. It maintains a list of vertices that have no incoming edges from other vertices that have not already been included in the partially constructed topological ordering; initially this list consists of the vertices with no incoming edges at all.
In graph theory and theoretical computer science, the longest path problem is the problem of finding a simple path of maximum length in a given graph.A path is called simple if it does not have any repeated vertices; the length of a path may either be measured by its number of edges, or (in weighted graphs) by the sum of the weights of its edges.
A Kahn process network (KPN, or process network) is a distributed model of computation in which a group of deterministic sequential processes communicate through unbounded first in, first out channels. The model requires that reading from a channel is blocking while writing is non-blocking.
The only known lower bound for any d is (), and optimal algorithms with this running time are known for d=1 and d=2. The Chan algorithm provides an upper bound of (/) for d ≥ 3, so for d ≥ 3, it remains an open question whether faster algorithms are possible, or alternatively whether tighter lower bounds can be proven.