Search results
Results from the WOW.Com Content Network
Ethylene glycol is produced from ethylene (ethene), via the intermediate ethylene oxide. Ethylene oxide reacts with water to produce ethylene glycol according to the chemical equation. C 2 H 4 O + H 2 O → HO−CH 2 CH 2 −OH. This reaction can be catalyzed by either acids or bases, or can occur at neutral pH under elevated temperatures. The ...
Table obtained from Lange's Handbook of Chemistry, 10th ed. Specific gravity is referenced to water at 15.6 °C. See also "Typical Freezing and Boiling Points of Aqueous Solutions of DOWTHERM SR-1 and DOWTHERM-SR4000" (PDF). Dow Chemical. Archived from the original (PDF) on 27 September 2007
This page contains tables of azeotrope data for various binary and ternary mixtures of solvents. The data include the composition of a mixture by weight (in binary azeotropes, when only one fraction is given, it is the fraction of the second component), the boiling point (b.p.) of a component, the boiling point of a mixture, and the specific gravity of the mixture.
As water or ethylene glycol freeze out of the mixture, the concentration of ethanol/methanol increases. This leads to a new, lower freezing point. With dry ice, these baths will never freeze solid, as pure methanol and ethanol both freeze below −78 °C (−98 °C and −114 °C respectively).
Examples include ethane-1,2-diol or ethylene glycol HO−(CH 2) 2 −OH, a common ingredient of antifreeze products. Another example is propane-1,2-diol , or alpha propylene glycol, HO−CH 2 −CH(OH)−CH 3 , used in the food and medicine industry, as well as a relatively non-poisonous antifreeze product.
In chemistry, a hydration reaction is a chemical reaction in which a substance combines with water. In organic chemistry, water is added to an unsaturated substrate, which is usually an alkene or an alkyne. This type of reaction is employed industrially to produce ethanol, isopropanol, and butan-2-ol. [1]
The OMEGA process ("Only MEG Advantage") [1] is a chemical process discovered by the Shell Global Solutions company that is used to produce ethylene glycol from ethylene.This process comprises two steps, the controlled oxidation of ethylene to ethylene oxide, and the net hydrolysis of ethylene oxide to monoethylene glycol (MEG). [2]
The toxic effects of ingesting ethylene glycol occur because it is converted by the liver into 4 other chemicals that are much more toxic. The lethal dose of pure ethylene glycol is 1.4 ml/kg (3 US fluid ounces (90 ml) is lethal to a 140-pound (64 kg) person) but is much less lethal if treated within an hour. [9] (see Ethylene glycol poisoning).