Search results
Results from the WOW.Com Content Network
Most genetic traits are polygenic in nature: controlled by many genetic variants, each of small effect. These genetic variants can reside in protein coding or non-coding regions of the genome. In this context pleiotropy refers to the influence that a specific genetic variant, e.g., a single nucleotide polymorphism or SNP, has on two or more ...
The effect is the variegation in a particular phenotype i.e., the appearance of irregular patches of different colour(s), due to the expression of the original wild-type gene in some cells of the tissue but not in others, [8] as seen in the eye of mutated Drosophila melanogaster.
Position effect is the effect on the expression of a gene when its location in a chromosome is changed, often by translocation. This has been well described in Drosophila with respect to eye color and is known as position effect variegation (PEV). [1] The phenotype is well characterised by unstable expression of a gene that results in the red ...
The brain and eyes, for example, can be significantly impacted by mutations in this gene and cause disorders such as Microphthalmia and Holoprosencephaly. [39] Microphthalmia is a condition that affects the eyes, which results in small, underdeveloped tissues in one or both eyes. [ 39 ]
Rhodopsin, also known as visual purple, is a protein encoded by the RHO gene [5] and a G-protein-coupled receptor (GPCR). It is a light-sensitive receptor protein that triggers visual phototransduction in rods. Rhodopsin mediates dim light vision and thus is extremely sensitive to light. [6] When rhodopsin is exposed to light, it immediately ...
Strength of natural selection plot as a function of age. The antagonistic pleiotropy hypothesis (APT) is a theory in evolutionary biology that suggests certain genes may confer beneficial effects early in an organism's life, enhancing reproductive success, while also causing detrimental effects later in life, contributing to the aging process.
The reason boils down to genes. A senior lecturer in biomolecular sciences at Liverpool John Moores University said, "What we know now is that eye color is based on 12 to 13 individual variations ...
Dichromacy in humans is a form of color blindness (color vision deficiency). Normal human color vision is trichromatic, so dichromacy is achieved by losing functionality of one of the three cone cells. The classification of human dichromacy depends on which cone is missing: