Search results
Results from the WOW.Com Content Network
The optimization of portfolios is an example of multi-objective optimization in economics. Since the 1970s, economists have modeled dynamic decisions over time using control theory . [ 14 ] For example, dynamic search models are used to study labor-market behavior . [ 15 ]
The geometric interpretation of Newton's method is that at each iteration, it amounts to the fitting of a parabola to the graph of () at the trial value , having the same slope and curvature as the graph at that point, and then proceeding to the maximum or minimum of that parabola (in higher dimensions, this may also be a saddle point), see below.
These formulas are equivalent for a quadratic function, but for nonlinear optimization the preferred formula is a matter of heuristics or taste. A popular choice is β = max { 0 , β P R } {\displaystyle \displaystyle \beta =\max\{0,\beta ^{PR}\}} , which provides a direction reset automatically.
The adjoint state method is a numerical method for efficiently computing the gradient of a function or operator in a numerical optimization problem. [1] It has applications in geophysics, seismic imaging, photonics and more recently in neural networks. [2] The adjoint state space is chosen to simplify the physical interpretation of equation ...
In numerical analysis, a quasi-Newton method is an iterative numerical method used either to find zeroes or to find local maxima and minima of functions via an iterative recurrence formula much like the one for Newton's method, except using approximations of the derivatives of the functions in place of exact derivatives.
It is a direct search method (based on function comparison) and is often applied to nonlinear optimization problems for which derivatives may not be known. However, the Nelder–Mead technique is a heuristic search method that can converge to non-stationary points [ 1 ] on problems that can be solved by alternative methods.
Rosenbrock search is a numerical optimization algorithm applicable to optimization problems in which the objective function is inexpensive to compute and the derivative either does not exist or cannot be computed efficiently. [5]
Detailed description of the algorithm can be found in Numerical Recipes in C, Chapter 15.5: Nonlinear models; C. T. Kelley, Iterative Methods for Optimization, SIAM Frontiers in Applied Mathematics, no 18, 1999, ISBN 0-89871-433-8. Online copy; History of the algorithm in SIAM news; A tutorial by Ananth Ranganathan