Search results
Results from the WOW.Com Content Network
Characteristic velocity or , or C-star is a measure of the combustion performance of a rocket engine independent of nozzle performance, and is used to compare different propellants and propulsion systems. c* should not be confused with c, which is the effective exhaust velocity related to the specific impulse by: =. Specific impulse and ...
The speed of a subsonic flow of gas will increase if the pipe carrying it narrows because the mass flow rate is constant. The gas flow through a de Laval nozzle is isentropic (gas entropy is nearly constant). In a subsonic flow, sound will propagate through the gas. At the "throat", where the cross-sectional area is at its minimum, the gas ...
The gas flow rate is constant (i.e., steady) during the period of the propellant burn. The gas flow is non-turbulent and axisymmetric from gas inlet to exhaust gas exit (i.e., along the nozzle's axis of symmetry). The flow is compressible as the fluid is a gas. As the combustion gas enters the rocket nozzle, it is traveling at subsonic velocities.
Orifice plate includes derivation of non-choked gas flow equation. de Laval nozzles are venturi tubes that produce supersonic gas velocities as the tube and the gas are first constricted and then the tube and gas are expanded beyond the choke plane. Rocket engine nozzles discusses how to calculate the exit velocity from nozzles used in rocket ...
With the information gathered on the flow bench, engine power curve and system dynamics can be roughly estimated by applying various formulae. With the advent of accurate engine simulation software, however, it is much more useful to use flow data to create an engine model for a simulator. Determining air velocity is a useful part of flow testing.
This is a reduction in the effective exhaust velocity, versus the actual exhaust velocity achieved in vacuum conditions. In the case of gas-generator cycle rocket engines, more than one exhaust gas stream is present as turbopump exhaust gas exits through a separate nozzle. Calculating the effective exhaust velocity requires averaging the two ...
The gas flow is constant. The gas flow is along a straight line from gas inlet to exhaust gas exit. The gas flow behavior is compressible. There are numerous applications where a steady, uniform, isentropic flow is a good approximation to the flow in conduits. These include the flow through a jet engine, through the nozzle of a rocket, from a ...
There is a well-defined, low-flow boundary marked on the map as a stall or surge line, at which blade stall occurs due to positive incidence separation. Not marked as such on maps for turbochargers and gas turbine engines is a more gradually approached, high-flow boundary at which passages choke when the gas velocity reaches the speed of sound.