enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Delta-v - Wikipedia

    en.wikipedia.org/wiki/Delta-v

    Delta-v is typically provided by the thrust of a rocket engine, but can be created by other engines. The time-rate of change of delta-v is the magnitude of the acceleration caused by the engines, i.e., the thrust per total vehicle mass. The actual acceleration vector would be found by adding thrust per mass on to the gravity vector and the ...

  3. Tsiolkovsky rocket equation - Wikipedia

    en.wikipedia.org/wiki/Tsiolkovsky_rocket_equation

    A rocket's required mass ratio as a function of effective exhaust velocity ratio. The classical rocket equation, or ideal rocket equation is a mathematical equation that describes the motion of vehicles that follow the basic principle of a rocket: a device that can apply acceleration to itself using thrust by expelling part of its mass with high velocity and can thereby move due to the ...

  4. Delta-v budget - Wikipedia

    en.wikipedia.org/wiki/Delta-v_budget

    Delta-v in feet per second, and fuel requirements for a typical Apollo Lunar Landing mission. In astrodynamics and aerospace, a delta-v budget is an estimate of the total change in velocity (delta-v) required for a space mission. It is calculated as the sum of the delta-v required to perform each propulsive maneuver needed during

  5. Orbital inclination change - Wikipedia

    en.wikipedia.org/wiki/Orbital_inclination_change

    For more complicated maneuvers which may involve a combination of change in inclination and orbital radius, the delta-v is the vector difference between the velocity vectors of the initial orbit and the desired orbit at the transfer point. These types of combined maneuvers are commonplace, as it is more efficient to perform multiple orbital ...

  6. Orbital maneuver - Wikipedia

    en.wikipedia.org/wiki/Orbital_maneuver

    The applied change in velocity of each maneuver is referred to as delta-v (). The delta-v for all the expected maneuvers are estimated for a mission are summarized in a delta-v budget. With a good approximation of the delta-v budget designers can estimate the propellant required for planned maneuvers.

  7. Specific impulse - Wikipedia

    en.wikipedia.org/wiki/Specific_impulse

    This is a significant reason for most rocket designs having multiple stages. The first stage can optimised for high thrust to effectively fight gravity drag and air drag, while the later stages operating strictly in orbit and in vacuum can be much easier optimised for higher specific impulse, especially for high delta-v orbits.

  8. Bi-elliptic transfer - Wikipedia

    en.wikipedia.org/wiki/Bi-elliptic_transfer

    Delta-v required for Hohmann (thick black curve) and bi-elliptic transfers (colored curves) between two circular orbits as a function of the ratio of their radii The figure shows the total Δ v {\displaystyle \Delta v} required to transfer from a circular orbit of radius r 1 {\displaystyle r_{1}} to another circular orbit of radius r 2 ...

  9. Gravity loss - Wikipedia

    en.wikipedia.org/wiki/Gravity_loss

    The actual acceleration of the craft is a-g and it is using delta-v at a rate of a per unit time. Over a time t the change in speed of the spacecraft is (a-g)t, whereas the delta-v expended is at. The gravity loss is the difference between these figures, which is gt. As a proportion of delta-v, the gravity loss is g/a.