enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Chloroplast - Wikipedia

    en.wikipedia.org/wiki/Chloroplast

    Chloroplasts, containing thylakoids, visible in the cells of Rosulabryum capillare, a type of moss. A chloroplast (/ ˈ k l ɔːr ə ˌ p l æ s t,-p l ɑː s t /) [1] [2] is a type of organelle known as a plastid that conducts photosynthesis mostly in plant and algal cells.

  3. Plastid - Wikipedia

    en.wikipedia.org/wiki/Plastid

    In land plants, the plastids that contain chlorophyll can perform photosynthesis, thereby creating internal chemical energy from external sunlight energy while capturing carbon from Earth's atmosphere and furnishing the atmosphere with life-giving oxygen. These are the chlorophyll-plastids—and they are named chloroplasts; (see top graphic).

  4. Chlorophyll - Wikipedia

    en.wikipedia.org/wiki/Chlorophyll

    Chlorophyll is any of several related green pigments found in cyanobacteria and in the chloroplasts of algae and plants. [2] Its name is derived from the Greek words χλωρός (khloros, "pale green") and φύλλον (phyllon, "leaf"). [3] Chlorophyll allows plants to absorb energy from light.

  5. Photosynthesis - Wikipedia

    en.wikipedia.org/wiki/Photosynthesis

    The oxidation of water is catalyzed in photosystem II by a redox-active structure that contains four manganese ions and a calcium ion; this oxygen-evolving complex binds two water molecules and contains the four oxidizing equivalents that are used to drive the water-oxidizing reaction (Kok's S-state diagrams).

  6. Marine primary production - Wikipedia

    en.wikipedia.org/wiki/Marine_primary_production

    Chloroplasts (from the Greek chloros for green, and plastes for "the one who forms" [31]) are organelles that conduct photosynthesis, where the photosynthetic pigment chlorophyll captures the energy from sunlight, converts it, and stores it in the energy-storage molecules while freeing oxygen from water in plant and algal cells.

  7. Plant cell - Wikipedia

    en.wikipedia.org/wiki/Plant_cell

    Many types of plant cells contain a large central vacuole, a water-filled volume enclosed by a membrane known as the tonoplast [3] that maintains the cell's turgor, controls movement of molecules between the cytosol and sap, stores useful material such as phosphorus and nitrogen [4] and digests waste proteins and organelles.

  8. Vacuole - Wikipedia

    en.wikipedia.org/wiki/Vacuole

    Most plants store chemicals in the vacuole that react with chemicals in the cytosol. If the cell is broken, for example by a herbivore , then the two chemicals can react forming toxic chemicals. In garlic, alliin and the enzyme alliinase are normally separated but form allicin if the vacuole is broken.

  9. Photosynthetic reaction centre - Wikipedia

    en.wikipedia.org/wiki/Photosynthetic_reaction_centre

    The reaction begins with the excitation of a pair of chlorophyll molecules similar to those in the bacterial reaction center. Due to the presence of chlorophyll a, as opposed to bacteriochlorophyll, Photosystem II absorbs light at a shorter wavelength. The pair of chlorophyll molecules at the reaction center are often referred to as P680. [1]